Main Article Content

Abstract

Tamarindus indica has numerous therapeutic benefits. Its therapeutic effects have been reported in some neurodegenerative conditions like Alzheimer's disease in rats. This study evaluated quantitative phytochemistry and effect of tamarind fruit pulp extract in traumatic brain injury (TBI) - induced neurobehavioral and histological changes in rats. Six groups of five rats each were used for this study. Groups I, II, III, and IV were treated with tamarind fruit pulp extract at doses of 100, 200, 400, and 800 mg/kg, orally, after being induced with TBI. Rats in group V were traumatized but not treated (TNT), while rats in group VI were not traumatized and were not treated (NTNT). The administration of treatment commenced 30 minutes after the occurrence of traumatic brain injury (TBI) and persisted for 21 consecutive days. The fruit was extracted using water, while HPLC quantified the phytochemicals. Neurological severity scores and novel object discrimination tests were carried out. The histological appearance of the brain tissue was also evaluated. The tamarind fruit pulp extract showed the characteristic peaks of rutin flavonoids, caffeic acids and tannic acids in the HPLC analysis. Tamarind fruit pulp extract improved neurological scores and memory function in the treated groups compared to group V, which did not show improvement. Histological results showed few lesions in the treated groups, while in the TNT group, massive and diffused lesions were observed. This study has shown that Tamarindus indica fruit contains neuro-therapeutic substances which may benefit TBI patients by improving their neurological and memory function.

Keywords

Tamarindus indica, Neurological severity score (NSS), Traumatic Brain Injury (TBI), Histology

Article Details

How to Cite
Quantitative Phytochemistry and Neuro- histological Effect of Tamarindus indica Fruit Pulp Aqueous Extract on Traumatic Brain Injury in Albino Rats. (2023). Sahel Journal of Veterinary Sciences, 20(4), 27-33. https://doi.org/10.54058/saheljvs.v20i4.426

How to Cite

Quantitative Phytochemistry and Neuro- histological Effect of Tamarindus indica Fruit Pulp Aqueous Extract on Traumatic Brain Injury in Albino Rats. (2023). Sahel Journal of Veterinary Sciences, 20(4), 27-33. https://doi.org/10.54058/saheljvs.v20i4.426

References

  1. Adeleye, A. O. and Ogun, M. I. (2017). Clinical epidemiology ‎of head injury from road-traffic trauma in a ‎developing country in the current era. Frontiers in ‎neurology, 8, 695. doi 10.3389/fneur.2017.00695‎
  2. Andre, C., Dinel, A. L., Ferreira, G., Layé, S., and Castanon, ‎N. (2014). Diet-induced obesity progressively alters ‎cognition, anxiety-like. Brain, Behavior and ‎Immunity. ‎http://dx.doi.org/10.1016/j.bbi.2014.03.012‎
  3. Appenteng, R., Nelp, T., Abdelgadir, J., Weledji, N., Haglund, ‎M., Smith, E. and Staton, C. (2018). A systematic ‎review and quality analysis of pediatric traumatic ‎brain injury clinical practice guidelines. PloS one, ‎‎13(8), e0201550. ‎https://doi.org/10.1371/journal.pone.0201550‎
  4. Bigler, E. D. and Maxwell, W. L. (2011). Neuroimaging and ‎neuropathology of TBI. Neuro Rehabilitation, ‎‎28(2), 63-74. doi: 10.3233/NRE-2011-0633‎
  5. Boligon, A. A., Pereira, R. P., Feltrin, A. C., Machado, M. M., ‎Janovik, V., Rocha, J. B. T. and Athayde, M. L. ‎‎(2009). Antioxidant activities of flavonol ‎derivatives from the leaves and stem bark of ‎Scutiabuxifolia Reiss. Bioresource technology, ‎‎100(24), 6592-6598. DOI: ‎‎10.1016/j.biortech.2009.03.091 ‎
  6. Chunglok, W., Utaipan, T., Somchit, N., ‎Lertcanawanichakul, M., and Sudjaroen, Y. (2014). ‎Antioxidant and Antiproliferative Activities of Non-‎Edible Parts of Selected Tropical Fruits. Sains ‎Malaysiana; 43(5):689-696.‎
  7. Davis, A. E. (2000). Mechanism of traumatic brain injury: ‎Biomechanical, Structural and Cellular ‎considerations. Critical care nursing quarterly, 23(3): ‎‎1-13. DOI: 10.1097/00002727-200011000-00002 ‎
  8. Dokin, J. J. and Vink, R. (2010). Mechanism of cerebral ‎edema in traumatic brain injury; therapeutic ‎development. Current opinion in neurology, 23(3): ‎‎293-299. DOI: 10.1097/WCO.0b013e328337f451 ‎
  9. El Gharras H. (2009). Polyphenols: food sources, properties ‎and applications—a review. International Journal ‎of Food Science & Technology, 44(12): 2512–2518. ‎https://doi.org/10.1111/j.1365-2621.2009.02077.x‎
  10. Elmaidomy, A. H., Abdelmohsen, U. R., Alsenani, F., Aly, H. ‎F., Shams, S. G. E., Younis, E. A., and El Amir, D. ‎‎(2022). The anti-Alzheimer potential of Tamarindus ‎indica: An in vivo investigation supported by in ‎vitro and in silico approaches. RSC advances, ‎‎12(19), 11769-11785. ‎DOIhttps://doi.org/10.1039/D2RA01340A
  11. Emejulu, J. K. C., Isiguzo, C. M., Agbasoga, C. E., and ‎Ogbuagu, C. N. (2010). Traumatic brain injury in ‎the accident and emergency department of a ‎tertiary hospital in Nigeria. East and Central African ‎Journal of Surgery, 15(2), 28-38.‎
  12. Finnie, J. W. (2016). Forensic pathology of traumatic brain ‎injury. Veterinary pathology, 53(5), 962-978. ‎Grimm, A., Friedland, K., and Eckert, P. (2016). ‎Mitochondrial dysfunction: the missing link ‎between aging and sporadic Alzheimers disease. ‎Biogerontology, 17: 281-296. DOI: ‎‎10.1177/0300985815612155 ‎
  13. Ikeda, K., Kurokawa, M., Aoyama, S., and Kuwana, Y. ‎‎(2002). Neuroprotection by adenosine A2A receptor ‎blockade in experimental models of Parkinson's ‎disease. Journal of neurochemistry, 80(2), 262-270. ‎DOI: 10.1046/j.0022-3042.2001.00694.x‎
  14. Jeremy, S. P. (2010). The impact of fruit flavonoids on ‎memory and cognition. British Journal of Nutrition, ‎‎104(3): 40-7. DOI: 10.1017/S0007114510003934 ‎
  15. Larit, F. and León, F. (2023). Therapeutics to Treat ‎Psychiatric and Neurological Disorders: A Promising ‎Perspective from Algerian Traditional Medicine. ‎Plants, 12(22), 3860. https://doi.org/10.3390/plants‎12223860‎
  16. Pandit, A. S., Expert, P., Lambiotte, R., Bonnelle, V., Leech, ‎R., Turkheimer, F. E., and Sharp, D. J. (2013). ‎Traumatic brain injury impairs small-world ‎topology. Neurology, 80(20), 1826-1833. ‎https://doi.org/10.1212/WNL.0b013e3182929f38‎
  17. Pumthong, G. (1999). Antioxidative activity of polyphenolic ‎compounds extracted from seed coat of ‎Tamarindus indica Linn. PhD Thesis, Chiangmai ‎University, Thailand.‎
  18. Rahaman, P. and Delbigio, M. R. (2018). Histology of Brain ‎Trauma and Hypoxia-Ischaemia. Academic ‎Forensic Pathology. doi: ‎‎10.1177/1925362118797728‎
  19. Scalbert, A., Johnson, I. T., and Saltmarsh, M. (2005). ‎Polyphenols: antioxidants and beyond. The ‎American Journal of Clinical Nutrition, 81(1): 215S-‎‎217S. DOI: 10.1093/ajcn/81.1.215S ‎
  20. Segun, T. D. and Stephen, K. (2019). Traumatic brain injury ‎‎(TBI), definition, epidemiology, pathophysiology, ‎Jun 27.‎
  21. Siddhuraj P, and Backer K, (2007) the antioxidant and free ‎radical scavenging activities of Tamarindus indica.‎
  22. Sofowora, A. (1996). Research on medicinal plants and ‎traditional medicine in Africa. The Journal of ‎Alternative and Complementary Medicine, 2(3): ‎‎365-372. https://doi.org/10.1089/acm.1996.2.365‎
  23. Spencer, J. P. (2010). The impact of fruit flavonoids on ‎memory and cognition. British Journal ofNutrition, ‎‎104(S3): S40-‎‎ S47. DOI: 10.1017/S0007114510003934 ‎
  24. Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J., and ‎Sniezek, J. E. (1999). Traumatic brain injury in the ‎United States: a public health perspective. The ‎Journal of head trauma rehabilitation, 14(6), 602-‎‎615. DOI: 10.1097/00001199-199912000-00009 ‎
  25. Tsuda, T., Watanabe, M., Ohshima, K., Yamamoto, A., ‎Kawakishi, S. and Osawa, T. (1994). Antioxidative ‎components are isolated from the seed of Tamarind ‎‎(Tamarindus indica L.). Journal Agricultural and ‎Food Chemistry 42, 2671–2674. ‎https://doi.org/10.1021/jf00048a004‎
  26. Vyas, N., Gavatia, N. P., Gupta, B. and Tailing, M. (2009). ‎Antioxidant potential of Tamarindus indica seed ‎coat. Journal of Pharmacy Research, 2: 1705-1706.‎
  27. Weichselbaum, E., Wyness, L. and Stanner, S. (2010). Apple ‎polyphenols and cardiovascular disease–a review of ‎the evidence. Nutrition Bulletin, 35(2): 92-101. ‎https://doi.org/10.1111/j.1467-3010.2010.01822.x‎
  28. Yarnell, A.M., Barry, E.S., Mountney, A., Shear, D., Tortella, ‎F. and Grunberg, N.E. (2016). The revised ‎neurobehavioral severity scale (NSS‐R) for rodents. ‎Current Protocols in Neuroscience, 75(1), pp.9-52. ‎https://doi.org/10.1002/cpns.10
  29. Zec, R. F., Zellers, D., Belman, J., Miller, J., Matthews, J., ‎Ferneau-Belman, D. and Robbs, R. (2001). ‎Longterm consequences of severe closed head ‎injury on episodic memory. Journal of clinical and ‎experimental neuropsychology, 23(5), 671-691. ‎https://doi.org/10.1076/jcen.23.5.671.1247
  30. Zemlan, F. P., Thienhaus, O. J. and Bosmann, H. B. (1989). ‎Superoxide dismutase activity in Alzheimer's ‎disease: possible mechanism for paired helical ‎filament formation. Brain research, 476(1), 160-‎‎162. DOI: 10.1016/0006-8993(89)91550-3‎