Main Article Content

Abstract

Exposure to high environmental temperature could lead to different heat-related illness as well as worsening some disease conditions. Thirty rats were used to determine the nature of the disturbances of the acid-base balance and electrolytes of blood serum after exposure to high ambient temperature. Twenty rats which formed the experimental group were exposed to sun for 30 minutes daily for two weeks, while the remaining rats served as the unexposed control group. The serum pH, serum HCO3- and electrolytes of both the groups in the first week and the second week were obtained using pH meter, back titration, flame photometry, mercurite titrimetric and spectro-photometry. Histopathology of the lungs and kidneys of rats from each group was carried out using basic histological technique. Results show decreased level of serum HCO3- and increased level of serum pH in the experimental group. In the second week there is significant difference in HCO3- levels (p<0.05). The serum pH in 1st and 2nd week did not show any significant difference in regard to change in the temperature. The findings also showed that high ambient temperature have significant effect on serum sodium (Na+), serum chloride (Cl-) and serum potassium levels (K) (p<0.05); but did not affect serum calcium (Ca+) level (p>0.05). There is glomerular degeneration, interstitial haemorrhage and tubular distension due to fluid retention in the kidney as revealed by the photomicrograph of the exposed rat kidneys. In the lungs of the exposed rat, there is mild interstitial haemorrhage and peribronchoilar epithelial shading. In conclusion, this study indicates that serum calcium is not significantly affected like in the case of serum sodium, chloride and potassium during heat stress and respiratory alkalosis is the predominant acid-base disorder in rats exposed to sun due the occurrence of hyperventilation in heat stress. This research provided some references of acid-base and electrolytes disorder in rats exposed to high ambient temperature. 

Keywords

Acid-base balance; Electrolytes; Rats; Serum; Temperature ‎

Article Details

How to Cite
The Effect of High Ambient Temperature on Acid-Base Balance and ‎Electrolyte Parameters in Rats. (2023). Sahel Journal of Veterinary Sciences, 20(4), 20-26. https://doi.org/10.54058/saheljvs.v20i4.375

How to Cite

The Effect of High Ambient Temperature on Acid-Base Balance and ‎Electrolyte Parameters in Rats. (2023). Sahel Journal of Veterinary Sciences, 20(4), 20-26. https://doi.org/10.54058/saheljvs.v20i4.375

References

  1. Allahverdi, A., Feizi, A., Takhtfooladi, H. A. and Nikpiran, H. ‎‎(2013). Effects of heat stress on acid-base ‎imbalance, plasma calcium concentration, egg ‎production and egg quality in commercial ‎layers. Global Veterinaria, 10(2): 203-‎‎207.https://doi.org/10.5829/idosi.gv.2013.10.2.728‎‎6‎
  2. Barltrop, D. (1954). The relation between body temperature ‎and respiration. The Journal of Physiology, 125(1): ‎‎19-20P.PMID: 13192781‎
  3. Bernstein, A. S. and Rice, M. B. (2013). Lungs in a warming ‎world: climate change and respiratory ‎health. Chest, 143(5): 1455-1459. ‎https://doi.org/10.1378/chest.12-2384‎
  4. Bouchama, A. and De Vol, E. B. (2001). Acid-base ‎alterations in heatstroke. Intensive care ‎medicine, 27: 680-685. ‎https://doi.org/10.1007/s001340100906‎
  5. Carlson, G. P. (1997). Fluid, electrolyte, and acid-base ‎balance. In Clinical Biochemistry of Domestic ‎Animals (pp. 485-516). Academic ‎Press.https://doi.org/10.1016/B978-012396305-‎‎5/50019-1‎
  6. Council for International Organizations of Medical Sciences ‎‎(2012). The International Council for Laboratory ‎Animal Science. International guiding principles for ‎biomedical research involving animals. CIOMS & ‎ICLAS, Geneva, December 2012.‎
  7. Dow, S. W., LeCouteur, R. A., Fettman, M. J. and Spurgeon, ‎T. L. (1987). Potassium depletion in cats: ‎hypokalemicpolymyopathy. Journal of the ‎American Veterinary Medical Association, 191(12): ‎‎1563-1568. PMID: 3693009‎
  8. Gaudio Jr, R. and Abramson, N. (1968). Heat-induced ‎hyperventilation. Journal of Applied Physiology, 25‎‎(6): 742-‎‎ 746.https://doi.org/10.1152/jappl.1968.25.6.742‎
  9. Gauer, R. L. and Meyers, B. K. (2019). Heat-related ‎illnesses. American Family Physician, 99(8): 482-‎‎489. https://familydoctor.org/condition/heat-‎exhaustion-heatstroke
  10. Grogan, H. and Hopkins, P.M. (2002). Heat Stroke: ‎Implications for Critical Care and Anesthesia. ‎British Journal of Anaesthesia, 88: 700-707. ‎https://doi.org/10.1093/bja/88.5.700‎
  11. Hales, J. R. S. and Webster, M. E. D. (1967). Respiratory ‎function during thermal tachypnoea in sheep. The ‎Journal of Physiology, 190(2): 241-260. ‎https://doi.org/10.1113/jphysiol.1967.sp008205‎
  12. Hall, J. E.and Hall, M. E. (2020). Guyton and Hall textbook ‎of medical physiology e-Book. Elsevier Health ‎Sciences.‎
  13. Ishaku, H. T.andMajid, M. R. (2010). X-raying rainfall ‎pattern and variability in Northeastern Nigeria: ‎impacts on access to water supply. Journal of water ‎resource and protection, 2(11): 952. ‎https://doi.org/10.4236/jwarp.2010.211113‎
  14. Knaus, W. A., Draper, E. A., Wagner, D. P. and Zimmerman, ‎J. E. (1985). Prognosis in acute organ-system ‎failure. Annals of surgery, 202(6): 685. ‎https://doi.org/10.1097/00000658-198512000-‎‎00004‎
  15. Lin, H., Du, R., Gu, X. H., Li, F. C. and Zhang, Z. Y. (2000). A ‎study on the plasma biochemical indices of heat-‎stressed broilers. Asian-Australasian Journal of ‎Animal Sciences, 13(9): 1210-1218. ‎https://doi.org/10.5713/ajas.2000.1210‎
  16. Madias, N.E. and Cohen, J.J. (1982). Acid-base chemistry ‎and buffering. In: Cohe J.J. Kassier J.P., editors. ‎Acid-base, Boston: p. 5.‎
  17. Magazanik, A., Shapiro, Y. and Shibolet, S. (1980). Dynaic ‎changes in acid base balance during heatstroke in ‎dogs. Pflügers Archive, 388(2): 129-135. ‎https://doi.org/10.1007/BF00584118‎
  18. McGeehin, M. A. and Mirabelli, M. (2001). The potential ‎impacts of climate variability and change on ‎temperature-related morbidity and mortality in the ‎United States. Environmental Health Perspectives, ‎‎109(suppl 2):185-189. ‎https://doi.org/10.1289/ehp.109-12406655‎
  19. Montain, S. J., Cheuvront, S. N. and Sawka, M. N. (2006). ‎Exercise associated hyponatraemia: quantitative ‎analysis to understand the aetiology. British ‎Journal of Sports Medicine, 40(2): 98-105. ‎http://dx.doi.org/10.1136/bjsm.2005.018481‎
  20. Motulsky, H. (1998). GraphPad Software, InStat Guide to ‎choosing and interpreting statistical tests, GraphPad ‎Software. Inc. San Diego California USA, ‎www.graphpad.com.‎
  21. Ochei, J. O. and Kolhatkar, A. A. (2000). Medical Laboratory ‎Science: Theory and Practice. McGraw Hill ‎Education. ‎
  22. Pohl, H. R., Wheeler, J. S. and Murray, H. E. (2013). Sodium ‎and potassium in health and disease. Interrelations ‎between essential metal ions and human diseases, ‎‎29-47. https://doi.org/10.1007/978-94-007-7500-‎‎8_2‎
  23. Quade, B. N., Parker, M. D. and Occhipinti, R. (2021). The ‎therapeutic importance of acid-base ‎balance. Biochemical Pharmacology, 183: 114278.‎https://doi.org/10.1016/j.bcp.2020.11‎
  24. Rastogi, S. C. (2007). Essentials of animal physiology. New ‎Age International.‎
  25. Rosner, M. H. and Kirven, J. (2007). Exercise-associated ‎hyponatremia. Clinical Journal of the American ‎Society of Nephrology, 2(1): 151-161. ‎https://doi.org/10.2215/CJN.02730806‎
  26. Sawka, M. N. and Greenleaf, J. E. (1992). Current concepts ‎concerning thirst, dehydration, and fluid ‎replacement: overview. Medicine and Science in ‎Sports and Exercise, 24(6): 643-644.PMID: ‎‎1602936.‎
  27. Sawka, M. N., Burke, L. M., Eichner, E. R., Maughan, R. ‎J., Montain, S. J. and Stachenfeld, N. S. (2007). American College of Sports Medicine position stand: ‎Exercise and fluid replacement. Medicine and ‎Science in Sports and Exercise, 39: 377–390. ‎https://doi.org/10.1097/00005768-199610000-‎‎00045‎
  28. Schales, O. and Schales, S. S. (1971). Determination of ‎chloride in laboratory. Journal of Biological ‎Chemistry, 140, 879.‎
  29. Seifter, J. L. (2019). Body fluid compartments, cell ‎membrane ion transport, electrolyte concentrations, ‎and acid-base balance. In Seminars in Nephrology, ‎‎39(4): 368-379. WB Saunders. ‎https://doi.org/10.1016/j.semnephrol.2019.04.006‎
  30. Sevastos, N., Theodossiades, G., Efstathiou, S., ‎Papatheodoridis, G. V., Manesis, E. and ‎Archimandritis, A. J. (2006). Pseudohyperkalemia in ‎serum: the phenomenon and its clinical ‎magnitude. Journal of Laboratory and Clinical ‎Medicine, 147(3): 139-144. ‎https://doi.org/10.1016/j.lab.2005.11.008‎
  31. Swerdlow, A. J. and Weinstock, M. A. (1998). Do tanning ‎lamps cause melanoma? An epidemiologic ‎assessment. Journal of the American Academy of ‎Dermatology, 38(1):89-98. ‎https://doi.org/10.1016/S0190-9622(98)70544-4‎
  32. Wiig, H., Luft, F. C. and Titze, J. M. (2018). The interstitium ‎conducts extrarenal storage of sodium and ‎represents a third compartment essential for ‎extracellular volume and blood pressure ‎homeostasis. Acta physiologica, 222(3): e13006. ‎https://doi.org/10.1111/apha.13006‎
  33. Winsor, L. (1994). Tissue processing. Laboratory ‎histopathology. New York: Churchill ‎Livingstone, 4: 2-39. ‎