Main Article Content

Abstract

Anaplasmosis, a disease caused by various species of Anaplasma, poses important economic constraints to animal breeders. In Zaria, molecular detection of tick-borne pathogens infecting cattle is very sketchy. Being hematophagous, ticks are capable of transmitting disease agents such as viruses, bacteria and protozoa. This study was carried out to detect for the presence of Anaplasma pathogen in the various tick species infesting white Fulani breeds of cattle owing to their high population in Zaria and environs using a Polymerase Chain Reaction (PCR). Three hundred and eighty-four (n=384) white Fulani breed of cattle of varying age and sex were sampled from 32 herds in 4 villages (Bomo, Tofu, Ungwan Dabosa and Majeru). The DNA was extracted using Qiagen commercial kit following manufacturer’s instructions. Genomic DNA of the species of ticks was amplified in a semi-nested PCR targeting the 16S rRNA fragment of the Anaplasma spp at expected amplicon size of 711bp. The PCR products were purified using Gel Extraction Kit (Bioland, Scientific LLC) following the manufacturer’s protocol. All sequences were subjected to a Basic Local Alignment Search Tool (BLAST) to determined their identities and assess their homologues and similarities to those in the GenBank. A neighbor-joining tree was generated using the Molecular Engineering Genetic Analysis (MEGA 7.0) to derive the close relationship between the isolates. The result of this study implies that Anaplasma spp (MN044909) is present in all the five species of ticks infesting cattle in Zaria, Kaduna State, Nigeria and pose a high risk on humans and animals health.


Anaplasmosis, a disease caused by various species of Anaplasma, poses important economic constraints to animal breeders. In Zaria, molecular detection of tick-borne pathogens infecting cattle is very sketchy. Being hematophagous, ticks are capable of transmitting disease agents such as viruses, bacteria and protozoa. This study was carried out to detect for the presence of Anaplasma pathogen in the various tick species infesting white Fulani breeds of cattle owing to their high population in Zaria and environs using a Polymerase Chain Reaction (PCR). Three hundred and eighty-four (n=384) white Fulani breed of cattle of varying age and sex were sampled from 32 herds in 4 villages (Bomo, Tofu, Ungwan Dabosa and Majeru). The DNA was extracted using Qiagen commercial kit following manufacturer’s instructions. Genomic DNA of the species of ticks was amplified in a semi-nested PCR targeting the 16S rRNA fragment of the Anaplasma spp at expected amplicon size of 711bp. The PCR products were purified using Gel Extraction Kit (Bioland, Scientific LLC) following the manufacturer’s protocol. All sequences were subjected to a Basic Local Alignment Search Tool (BLAST) to determined their identities and assess their homologues and similarities to those in the GenBank. A neighbor-joining tree was generated using the Molecular Engineering Genetic Analysis (MEGA 7.0) to derive the close relationship between the isolates. The result of this study implies that Anaplasma spp (MN044909) is present in all the five species of ticks infesting cattle in Zaria, Kaduna State, Nigeria and pose a high risk on humans and animals health.

Keywords

Molecular, Anaplasma, PCR, ticks, cattle, Zaria‎

Article Details

How to Cite
Molecular Detection of Anaplasma phagocytophilum in Ixodid Ticks Infesting White Fulani Cattle in Zaria and its Environs, Kaduna State, Nigeria. (2023). Sahel Journal of Veterinary Sciences, 20(2), 1-7. https://doi.org/10.54058/saheljvs.v20i2.249

How to Cite

Molecular Detection of Anaplasma phagocytophilum in Ixodid Ticks Infesting White Fulani Cattle in Zaria and its Environs, Kaduna State, Nigeria. (2023). Sahel Journal of Veterinary Sciences, 20(2), 1-7. https://doi.org/10.54058/saheljvs.v20i2.249

References

  1. Ajayi, S.A., Fabiyi, J.P., Umo, I. (1982). Clinical bovine ‎anaplasmosis and babesiosis in Fresian cattle: an ‎outbreak in Nigeria and its control. Wld. Anim. ‎Rev., 36, 68.‎
  2. Akinboade, O.A and Dipeolu O.O. (1984). Comparison of ‎blood smear and indirect fluorescent antibody ‎techniques in detection of haemoparasite ‎infections in trade cattle in Nigeria. Vet. Parasitol., ‎‎14: 95–104. ‎PMID: 6369761DOI: 10.1016/03044017(84)9011‎‎6-x
  3. Almeria, S., Castella, J., Ferrer, D., Ortuno, A., Estrada-Peña, ‎A. (2001). Bovine piroplasms in Minorca (Balearic ‎Islands, Spain): a comparison of PCR-based and ‎light microscopy detection. Vet. Parasitol., 99 (3): ‎‎249-59. https://doi: 10.1016/s0304-‎‎4017(01)00464-2.‎
  4. Asmaa, N.M., Elbably, M.A., and Shokier, K.A. (2014). ‎Studies on prevalence, risk indicators and control ‎options for tick infestation in ruminants. Beni – ‎Seuf Univ. J. of Basic and Appl. Sci., 68 – 73. ‎https://doi.org/10.1016/j.bjbas.2014.02.009.‎
  5. Bayer, W., and Maina, J.A. (1984). Seasonal pattern of tick ‎load in Bunaji cattle in the sub humid zone of ‎Nigeria. Vet. Parasitol., 15 (3-4): 301-307. ‎https://doi: 10.1016/0304-4017(84)90082-7.‎
  6. Bilgiç, H.B., Karagenç, T., Simuunza, M., Shiels, B., Tait, A. ‎‎(2013). Development of a multiplex PCR assay for ‎simultaneous detection of Theileria annulata, ‎Babesia bovis and Anaplasma marginale in cattle. ‎Exp. Parasitol., 133: 222-229. ‎doi: 10.1016/j.exppara.2012.11.005‎
  7. Cardoso, L., Tuna, J., Vieira, L., Yisaschar-Mekuzas, Y., ‎Baneth, G. (2010b). Molecular detection of ‎Anaplasma platys and Ehrlichia canis in dogs ‎from the North of Portugal. Vet. J., 183: 232-323. ‎DOI: 10.1016/j.tvjl.2008.10.009‎
  8. Dumler, J.S., Barbet, A.F., Bekker, C.P., Dasch, G.A., ‎Palmer, G.H., Ray, S.C., Rikhisa, Y., Rurangirwa, ‎F.R. (2001). Reorganization of genera in the ‎family’s Rickettsiaceae and Anaplasmataceae in ‎the order Rickettsiales: unification of some species ‎of Ehrlichia with Anaplasma, Cowdria with ‎Ehrlichia and Ehrlichia with Neorickettsia. Int. J. ‎of Syst. and Evol. Micr., 2145-2165. ‎DOI: 10.1099/00207713-51-6-2145‎
  9. Elelu N, Ferrolho J, Couto J, Domingos A, Eisler MC (2016) ‎Molecular diagnosis of the tick-borne pathogen ‎Anaplasma marginale in cattle blood samples ‎from Nigeria using qPCR. Exp. Appl. Acarol. 70: ‎‎501–510. DOI: 10.1007/s10493-016-0081-y
  10. Elhaig, M.M., Youssef, A.I., and El-Gayar, A.K. (2013). ‎Molecular and parasitological detection of ‎Trypanosoma evansi in camels in Ismailia, Egypt. ‎Vet. Parasitol., 198: 214-218. ‎DOI: 10.1016/j.vetpar.2013.08.003‎
  11. Ghosh, S. and Najar, G. (2014). Problem of ticks and tick-‎borne diseases in India with special emphasis on ‎progress in tick control research: a review. J. of ‎Vect. Borne Dis., 51: 259-270. ‎https://www.cabdirect.org/cabdirect/abstract/2015‎‎3112178‎
  12. Joseph, E.E., Felicia, N.E., Njoku Ivoke, C.I., Atama, I.E., ‎Onah, N., Evelyn, E. and Chika, B.I. (2014). ‎Survey of Tick Infestation of Cattle at Four ‎Selected Grazing Sites in the Tropics. Global Vet., ‎‎12 (4): 479-486. DOI: ‎‎10.5829/idosi.gv.2014.12.04.8325‎
  13. Kamani, J., Baneth, G., Mumcuoglu, K.Y., Waziri, N.E., ‎Eyal, O., Guthmann, Y. 2010. Prevalence and ‎significance of haemoparasitic infections of cattle ‎in north-central. Nigeria. Vet. World. 3: 445–8. ‎doi: 10.5455/vetworld.2010.445-448‎
  14. Kikule SB. 1953. Age changes in the teeth of Zebu cattle. ‎East Afr. J. of Rur. Dev., 19: 86-88.‎
  15. Kim, S.W., Kim, C.M., Kim, D.M., Yun, N.R. (2018). ‎Manifestation of anaplasmosis as cerebral ‎infarction: a case report. BMC Inf. Dis., 17;18 (1): ‎‎409. DOI: 10.1186/s12879-018-3321-4‎
  16. Kowalec, M., Szewczyk, T., Welc-Falęciak R., Siński, E., ‎Karbowiak, G., Bajer, A. (2019). Rickettsiales ‎Occurrence and Co-occurrence in Ixodes ‎ricinusTicks in Natural and Urban Areas. Micr. ‎Ecol. 77 (4): 890-904. doi: 10.1007/s00248-018-‎‎1269-y
  17. Krakowetz, C.N., Dibernardo, A., Lindsay, L.R., Chilton, ‎N.B. (2014). Two Anaplasmapha gocytophilum ‎strains in Ixodes scapularis ticks, Canada. Emerg. ‎Inf. Dis., 20: 2064-7. ‎doi: 10.3201/eid2012.140172‎
  18. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: ‎Molecular Evolutionary Genetics Analysis version ‎‎7.0 for bigger datasets. Mol. Biol. and Evol., 33: ‎‎1870-1874. DOI: 10.1093/molbev/msw054‎
  19. Lee, S.H, Park, S.Y., Jang, M.J., Choi, K.J., Lee, H.K., Cho, ‎Y.U., Lee, Y.S., Kim, S.H., Hwang, S.D. (2017). ‎Clinical Isolation of Anaplasmapha ‎gocytophilum in South Korea. Amer. J. of Trop. ‎Med. Hyg. 97 (6): 1686-1690. ‎DOI: 10.4269/ajtmh.16-0529‎
  20. Leeflang, P. and Ilemobade, A.A. (1977b). Tick-borne ‎diseases of domestic animals in northern Nigeria. ‎II. Research summary, 1966 to 1976. Trop. Anim. ‎Health Prod., 9: 211–8. ‎DOI: 10.1007/BF02240342‎
  21. Lorusso, V., Picozzi, K., de Bronsvoort, B.M., ‎Majekodunmi, A., Dongkum, C., Balak, G. (2013). ‎Ixodid ticks of traditionally managed cattle in ‎central Nigeria: where Rhipicephalus (Boophilus) ‎microplus does not dare (yet?). Par. and Vect., 6: ‎‎171. DOI: 10.1186/1756-3305-6-171‎
  22. Luqman, T.O., Mohammed, A., Ulrike, S., Jabbar, S.A. ‎‎(2007). A survey of ticks (Acari: Ixodidae) on ‎cattle, sheep and goats in the Dohuk Governorate, ‎Iraq. Parasitol. Res., 101 (Suppl 2): S179–S181. ‎DOI: 10.1007/s00436-007-0690-9‎
  23. Madder, M., Adehan, S., De Deken, R., Adehan, R., ‎Lokossou, R. (2012). New foci of Rhipicephalus ‎microplus in West Africa. Exp. Appl. Acarol., 56: ‎‎385-390. doi: https://doi.org/10.1007/s10493-012-‎‎9522-4‎
  24. Melhorn, H. and P.M. Armstrong (2010). Encyclopedic ‎reference of parasitology on line. ‎http://parasitology,infromatick. Uni-wuerzburg. ‎
  25. Mohammed, B.R., Malang, S.K., Mailafia, S., Agbede, ‎R.I.S. (2016) Application of Biotechnology ‎towards Diagnosis and Treatment in Veterinary ‎Medicine in Africa: Potentials and Future ‎Developments. J. of Biot. and Biom., 6: 245. DOI: ‎‎10.4172/2155-952X.1000245‎
  26. Mohammed, A.N. (1977). The seasonal incidence of ixodid ‎ticks of cattle in Northern Nigeria. Bull. Anim. ‎Health and Prod. in Afri., 25: 273-293.‎
  27. Mortimore, M.J (1970). Zaria and its Regions. Ann. of the ‎Assoc. of Amer. Geogr., 60 (1): 73-80. ‎DOI: 10.4236/jwarp.2015.78053‎
  28. Musa, H.I., Jajere, S.M., Adamu, N.B., Atsanda, N.N., ‎Lawal, J.R., Adamu, S.G., Lawal, E.K. (2014). ‎Prevalence of tick infestation in different breeds of ‎cattle in Maiduguri, Northeastern Nigeria. ‎Bangaledash J. Vet. Med., 12 (2): 161-166. ‎https://doi.org/10.3329/bjvm.v12i2.21279‎
  29. Natala, A.J., Okubanjo, O.O., Ulayi, B.M., Owolabi, Y.N., ‎Jatau, I.D. and Yusuf, K.H. (2009). Ectoparasites ‎of domestic animals in Northern Nigeria. J. Anim. ‎and Pl. Sci., 3: 238-242.‎
  30. Obadiah, H. I. and Shekaro. (2012). ASurvey of Tick ‎Infestation in Cattle in Zaria Abattoir, Nigeria. J. ‎Vet. Adv., 2 (2): 81-87.‎
  31. Ogo, N. I., Okubanjo, O. O., Inuwa, H. M., and Agbede, R. I. ‎S. (2017). Morphological and Molecular ‎Characterization of Amblyomma variegatum ‎‎(Acari: Ixodidae) Ticks from Nigeria. Nig. Vet. J., ‎‎38 (3): 260-267. ISSN 0331-3026.‎
  32. Okubanjo, O.O., Adeshina, O.A., Jatau, I.D. and Natala, A.J. ‎‎(2013). Prevalence of Babesia canis and ‎Hepatozoon canis in Zaria, Nigeria. Sokoto J. of ‎Vet. Sci., 11 (2): 15-20. ‎https://doi.org/10.4314/sokjvs.v11i2.3‎
  33. Opara, M. N and Ezeh, N. O. (2011). Ixodid ticks of cattle in ‎Borno and Yobe states of Northeastern Nigeria: ‎Breed and Coat colour preference. Anim. Res. Int. ‎‎8 (1): 1359 – 1365. ISSN: 159 – 3115.‎
  34. Oyamada, M., Bernard, D., Mickae, B., Jacques, D., Bruno, ‎B. (2005). Detection of Babesia canisrossi, B. ‎canis vogeli, and Hepatozoon canis in dogs in a ‎village of Eastern Sudan by using a screening PCR ‎and sequencing methodologies. Clin. Diag. Lab ‎and Immunol., 1343–1346. ‎DOI: 10.1177/1040638714567935‎
  35. Peleg, O., Baneth, G., Eyal, O., Inbar, J., Harrus, S. (2010). ‎Multiplex real-time qPCR for the detection of ‎Ehrlichia canis and Babesia canisvogeli. Vet. ‎Parasitol., 173: 292–299. ‎DOI: 10.1016/j.vetpar.2010.06.039 ‎
  36. Pullan, N.B. (1980). Productivity of white Fulani cattle on ‎the Jos Plateau, Nigeria. III Disease and ‎management factors. Trop. Anim. Health Prod., ‎‎12: 77-84. PMID: 7414701. ‎DOI: 10.1007/BF02242612‎
  37. Rar, V.A. (2005). Tickborne pathogen detection, Western ‎Siberia, Russia. Emerg. Inf. Dis., 11: 1708–1715. ‎doi: 10.3201/eid1111.041195 ‎
  38. Saidu, S.N., Abdulkadir, I.A., Akerejola, O.O. (1984). ‎Theileria mutans infection in Nigerian cattle. Trop. ‎Anim. Health Prod., 16: 149–52. ‎DOI: 10.1007/BF02252781‎
  39. Saitou N. and Nei M. (1987). The neighbor-joining method: ‎A new method for reconstructing phylogenetic ‎trees. Mol. Biol. and Evol., 4: 406-425. ‎https://doi.org/10.1093/oxfordjournals.molbev.a0‎‎40454‎
  40. Sajid, M.S. (2007). Epidemiology, acaricidal resistance of ‎tick population infesting domestic ruminants. Ph.D. ‎thesis, Faisalabad, Pakistan: University of ‎Agriculture, P: 47.‎
  41. Sharma, A., Singla, L.D., Tuli, A., Kaur, P., Batth, B.K. ‎‎(2013). Molecular prevalence of Babesia bigemina ‎and Trypanosoma evansi in dairy animals from ‎Punjab, India, by duplex PCR: a step forward to ‎the detection and management of concurrent ‎latent infections. Biomed. Res. Int., 893862. ‎DOI: 10.1155/2013/893862‎
  42. Shaw, S.E, Michael, J.D., Richard, J.B., Breitschwerdt, E.B. ‎‎(2001). Tick-borne infectious diseases of dogs. ‎Trends in Parasitol., 17: 74–80. ‎DOI: 10.1016/s1471-4922(00)01856-0‎
  43. Sonenshine, D. (2005). The biology of tick vectors of ‎human disease. In tick borne diseases of humans, ‎by Jesse L, Goodman, David Tappen Dennis, and ‎Daniel E. Sonenshine, 12-36. ASM Press. ‎doi: 10.3201/eid1111.051160‎
  44. Stuen, S., Nevland, S., Moum, T. (2003). Fatal cases of tick-‎borne fever (TBF) in sheep caused by several 16S ‎rRNA gene variants of Anaplasma ‎phagocytophilum in wild boar in Slovenia. Ann. of ‎New York Acad. of Sci., 990 (1): 433-434. ‎DOI: 10.1111/j.1749-6632.2003.tb07407.x‎
  45. Suarez, C.E, and Noh, S. (2011). Emerging perspectives in ‎the research of bovine babesiosis and ‎anaplasmosis. Vet. Parasitol., 180: 109-125. ‎DOI: 10.1016/j.vetpar.2011.05.032‎
  46. Suksawat, J., Xuejie, Y., Hancock, S.I., Hegarty, B.C., ‎Nilumhang, P. (2001). Serologic and molecular ‎evidence of co infection with multiple vector borne ‎pathogens in dogs from Thailand. J. of Vet. Int. ‎Med., 15: 453–462. DOI: 10.1892/0891-‎‎6640(2001)015<0453:sameoc>2.3.co;2‎
  47. Takeet, M.I., Fagbemi, B.O., De Donato, M., Yakubu, A., ‎Rodulfo, H.E. (2013). Molecular survey of ‎pathogenic trypanosomes in naturally infected ‎Nigerian cattle. Res. Vet. Sci., 94: 555-561. ‎DOI: 10.1016/j.rvsc.2012.10.018‎
  48. Tamura, K., Nei, M., and Kumar, S. (2004). Prospects for ‎inferring very large phylogenies by using the ‎neighbor-joining method. Proceedings of the ‎National Academy of Sciences, (USA) 101:11030-‎‎11035. DOI: 10.1073/pnas.0404206101‎
  49. Tran, T., Napier, G., Rowan, T., Cordel, C., Labuschagne, ‎M. (2014). Development and evaluation of an ‎ITS1 “Touchdown” PCR for assessment of drug ‎efficacy against animal African trypanosomosis. ‎Vet. Parasitol., 202: 164-170. ‎https://doi.org/10.1016/j.vetpar.2014.03.005‎
  50. Walker, A.R, Bouattour, A., Camicas, J.J., Estrada Pena, A., ‎Horak, I.G., Latif, A.A., Pegram, R.G., Preston, ‎P.M. (2003). Ticks of domestic animals in Africa: ‎A Guide to Identification of Tick species. ‎Bioscience Repository. pp. 1-122. ‎
  51. Walker, J.B., Keirans, J.E., Horak, I.G. (2000). Genus ‎Rhipicephalus (Acari, Ixodidae). A guide to the ‎brown ticks of the world. Cambridge: Cambridge ‎University Press.‎
  52. Zhang, L., Liu, H., Xu, B., Lu, Q., Li, L. ‎‎(2012) Anaplasmapha gocytophilum infection in ‎domestic animals in ten provinces/cities of ‎China. Amer. J. of Trop. Med. and Hyg., 87: 185–‎‎189. doi: 10.4269/ajtmh.2012.12-0005‎