Main Article Content

Abstract

This study was designed to assess the effect of Infectious Bursal Disease Virus (IBDV) on oxidative stress biomarkers in broiler chickens fed Moringa oleifera leaf (MOL) supplemented feed. Two hundred- and forty-day-old Ross 308 hybrid broiler chicks were randomly assigned into groups A, B, C and D of 60 chicks each.The chicks were raised on deep litter housing.Broiler starter (BS) and broiler finisher (BF) mash were formulated for broilers in groups A and B each with 5% MOL supplemented as part of the feed.while BS and BF were formulated without MOL for broilers in groups C and D. Broiler chickens in groups A, B and C were challenged with 0.05 ml of a live vvIBDV at 35 days of age, whereas those in group D served as controls. At days 35, 38, 42 and 49 of age, blood was collected from 10 broilers in each group via the wing vein to determine serum concentration of Catalase (CAT), Glutathione peroxidase (GPx), Superoxidase dismutase (SOD) and Malondialdehyde (MDA) using an Audiocomb Serum Auto-analyser.There was a significant increase in the concentration of CAT (P=0.0125) and GPx (P=0.0190), in broilers of group A at 38 days of age when compared with the control (group D). While the concentration of MDA increased significantly in broilers of group A (P=0.0004) at 42 days of age when compared with the control. Moringa oleifera leaf supplementation in the feed of broilers is shown to potentiate the antioxidant activities of CAT, GPx and MDA during infection with infectious bursal disease virus.

Keywords

Chickens; Infectious bursal disease; Moringer oleifera; Oxidative stress‎

Article Details

How to Cite
Effect of Moringa oleifera Supplementation on Oxidative Stress Biomarkers ‎during Infectious Bursal Disease Virus Infection in Broiler Chickens. (2021). Sahel Journal of Veterinary Sciences, 18(3), 19-26. https://doi.org/10.54058/saheljvs.v18i3.229

How to Cite

Effect of Moringa oleifera Supplementation on Oxidative Stress Biomarkers ‎during Infectious Bursal Disease Virus Infection in Broiler Chickens. (2021). Sahel Journal of Veterinary Sciences, 18(3), 19-26. https://doi.org/10.54058/saheljvs.v18i3.229

References

  1. Abdu, P.A. (1986). Infectious bursal disease immunization ‎failures in chicken in Nigeria. Tropical Animal ‎Health and Production, 18:123-125.‎
  2. Ames, B.N., Shigenaga, M.K. and Hagen, T.M. (1993). ‎Oxidants, antioxidants and the degenerative ‎disease of aging. Proceeding of National ‎Academy of Sciences. USA 90:7915–7922.‎
  3. Anjorin, T.B., Ikokoh, P. and Okolo, S. (2010). Mineral ‎composition of Moringa leaves, pods and seeds ‎from two regions in Abuja, Nigeria. International ‎Journal of Agriculture and Biology,12: 431 – ‎‎434.‎
  4. Aregheore, E.M. (2002). Intake and digestibility of Moringa ‎oleifera batiki grass mixtures by growing goats. ‎Small Ruminant Research, 46(1), 23-28. DOI: ‎‎10.1016/S0921-4488(02)00178-5‎
  5. Aricibasi, M., Jung, A., Heller, E.D and Rautenschlein, S. ‎‎(2010). Differences in genetic background ‎influence the induction of innate and acquired ‎immune responses in chickens depending on the ‎on the virulence of the infecting Infectious Bursal ‎Disease Virus (IBDV) strain. Veterinary ‎Immonology and Immunopathology, 135(1-2): ‎‎79-92. DOI: 10.1016/j.vetimm.2009.11.005 ‎
  6. Association of Official Analytical Chemists (AOAC) (1990). ‎Official Methods of Analysis, Association of ‎Official Analytical Chemists,Washington, D.C., ‎USA. 15th Edition, pp. 807-928.‎
  7. Azzam, M.M., Jiang, S., Chen, J., Lin, X., Gou, Z., Fan, Q., ‎Wang, Y., Li, L. and Jiang, Z. (2019). Effect of ‎soybean isoflavones on growth performance, ‎immune function and viral protein 5 mRNA ‎expression in broiler chickens challenged with ‎infectious bursal disease virus. Animals, 9(247) 1-‎‎12.‎
  8. Balami, A.G., Abdu, P.A., Wakawa, A.M and Aluwong, T. ‎‎(2016). Evaluating the nutritional and therapeutic ‎values of Moringa oleifera leaf supplementation ‎in poultry feeds. Sahel Journal of Veterinary ‎Science, 15(2) 113 – 120.‎
  9. Bukar, A.U. and Oyeyi, T.I. (2010). Antimicrobial profile of ‎Moringa oleifera Lam. Extracts against some ‎food-borne microorganisms, Bayero Journal of ‎Pure and Applied Sciences, 3(1): 43-48. DOI: ‎‎10.4314/bajopas.v3i1.58706‎
  10. Draper, H.H. and Hadley, M. (1990). Melondialdehyde ‎determination as index of lipid peroxidation. ‎Methods in Enzymology; 186:421-431. DOI: ‎‎10.1016/0076-6879(90)86135-I ‎
  11. Ertekin, A., Yildirim, B.A., Yildirim, S., Yildirim, F. and ‎Tütüncü, M. (2016). Investigation of the lipid ‎peroxidation, antioxidant enzymes, antioxidant ‎vitamins, oxidation product of nitric oxide and ‎some biochemical parameters in chicken with ‎infectious bursal disease (IBD). Europ. Poultry ‎Science., 80; 1-9. DOI: 10.1399/eps.2016.164‎
  12. Fahey, J.W. (2005). Moringa oleifera: a review of the ‎medical evidence for its nutritional, therapeutic, ‎and prophylactic properties. Part1. Trees for Life ‎Journal, 1(5). DOI: ‎‎10.1201/9781420039078.ch12‎
  13. Falowo, A.B., Muchenje, V., Hugo, A., Aiyegoro, O.A. and ‎Fayemi, P.O. (2017). Antioxidant activities of ‎Moringa oleifera L. and Bidens pilosa L. leaf ‎extracts and their effects on oxidative stability of ‎ground raw beef during refrigeration storage. ‎CyTA - Journal of Food, 15:2, 249-256, DOI: ‎‎10.1080/19476337.2016.1243587‎
  14. Gomez, E., Dugue, P., Diaz, E., Facal, N., Antolin, I., ‎Hidalgo, C. and Diez, C. (2002). Effects of ‎acetoacetate and D-bete-hydroxybutyrate on ‎bovine invitro embryo development in serum free ‎medium. Theriogenology, 57(5):1551-1562. DOI: ‎‎10.1016/s009391x(02)00660-x
  15. Jahn, S.A.A. (1984). Effectiveness of traditional flocculants ‎as primary coagulants and coagulant aids for ‎treatment of tropical raw water with more than a ‎thousand-fold fluctuation in turbidity, Water ‎Supply, 6: 8-10.‎
  16. Khalafalla, M.M., Abdellatef, E., Dafalla, H.M., Nassrallah, ‎A.A. and Aboul-Enein, K.M., Lightfoot, D.A. and ‎El-Shemy, H.A. (2010). Active principle from ‎Moringa oleifera Lam Leaves effective against ‎two leukemias and a hepatocarcinoma. African ‎Journal of Biotechnology. 9, 8467-8471. DOI: ‎‎10.5897/AJB10.996 ‎
  17. Kunn, H. and Borchert, A. (2002). Regulation of enzymatic ‎lipid peroxidation: The interplay of peroxidizing ‎and peroxide reducing enzymes. Free Radical ‎Biology and Medicine, 33: 154-172. DOI: ‎‎10.1016/s0891-5849(02)00855-9 ‎
  18. Lu, T., Piao, X.L., Zheng, Q., Wang, D., Piao, X.S. and Kim, ‎S.W. (2010). Protective effects of forsythia ‎suspense extract against oxidative stress induced ‎by diquate in rats. Food and Chemical ‎Toxicology, 48:764-770. DOI: ‎‎10.1016/j.fct.2009.12.018 ‎
  19. Makkar, H.P.S. and Becker, K. (1999). Plant toxins and ‎detoxification methods to improve feed quality ‎of tropical seeds – review. Asian–Australian ‎Journal of Animal Science, 12: 467–480. ‎https://doi.org/10.5713/ajas
  20. McDonald, P, Edwards, RA, Greenhalgh, J.F.O., Morgan, ‎C.A. (1995). Animal nutrition. 4th Edn., John ‎Wiley and sons, United State, pp: 607.‎
  21. Min, B.R., Nam, K.C., Cordray, J. and Ahn, D.U. (2008). ‎Factors affecting oxidative stability of pork, beef, ‎and chicken meat. Animal Industry Report: AS ‎‎654, ASL R2257. DOI: https://doi.org/10.31274/ans_air-180814-1046‎
  22. Moyo, B., Masika, P.J., Hugo, A. and Muchenje, V. (2011). ‎Nutritional characterization of Moringa (Moringa ‎oleifera) Lam.) leaves. African Journal of ‎Biotechnology. 10: 12925-12933. ‎
  23. Niki, E. (1996). Free radical- induced oxidative damage and ‎nutritional oxidants. Proceedings of 2nd W.H.O. ‎Symposium on Health Issues for 21st Century, pp. ‎‎105-108.‎
  24. Okeudo, N., Okoli, I.C. and Igwe, G.O.F. (2003). ‎Haematological characteristics of ducks (Carina ‎moschata) of South Eastern Nigeria. Tropicultura, ‎‎21: 61-65.‎
  25. Okoye, J.O.A. (1983). The effect of late infectious bursal ‎disease on the severity of naturally occurring ‎Eimeria necatrix infection in chickens. Bulletin of ‎Animal Health and Production in Africa, 31: 263-‎‎267.‎
  26. Olugbemi, T.S., Mutayoba, S.K and Lekule, F.P. (2010). ‎Evaluation of Moringa oleifera leaf meal ‎inclusion in cassava chip-based diets fed to laying ‎birds. Livestock Research for Rural Development, ‎‎22 (6): 118. ‎http://www.lrrd.org/lrrd22/6/olug22118.htm
  27. Onu, P.N. and Aniebo, A.O. (2011).Influence of Moringa ‎oleifera leaf meal on the performance and blood ‎chemistry of starter broilers.International Journal ‎of Food, Agriculture and Veterinary Sciences,1 ‎‎(1): 38-44.‎
  28. Peterhans, E., Grob, M., Burge, T. and Zanoni, R. (1987). ‎Virus-induced formation of reactive oxygen ‎intermediates in phagocytic cells. Free Radical ‎Research Communications, 3(1–5): 39–46. DOI: ‎‎10.3109/10715768709069768 ‎
  29. Ramachandran, C., Peter, K.V. and Gopalakrishnan, P.K. ‎‎(1980). Drumstick (Moringa oleifera): a ‎multipurpose Indian vegetable. Economic ‎Botany, 34: 276–283. DOI 10.1007/BF02858648‎
  30. Ray, G. and Husain, S.A. (2002). Oxidants, antioxidants ‎and carcinogenesis. Indian Journal of ‎Experimental Biology, 40 (11): 1213-1232.‎
  31. Rehman, Z.U., Meng C., Umar, S., Munir, M. and Ding, C. ‎‎(2016). Interaction of infectious bursal disease ‎virus with the immune system of poultry. World's ‎Poultry Science Journal, 72(4): 805–820. DOI: ‎https://doi.org/10.1017/S0043933916000775‎
  32. Reshi, M.L., Su, Y.C. and Hong, J.R. (2014). RNA viruses: ‎ROS-mediated cell death. InternationalJournal ‎of Cell Biology, 1-16. DOI: ‎‎10.1155/2014/467452 ‎
  33. Sandhu, S.K. and Kaur, G. (2002). Alterations in oxidative ‎stress scavenger system in aging rat brain and ‎lymphocytes. Biogerontology3:161–173. DOI: ‎‎10.1023/a:1015643107449 ‎
  34. Sehirli, O., Tozan, A., Omurtag, G.Z., Cetinel, S., Contuk, G., ‎Gedik, N. and Sener, G. (2008). Protective effect ‎of resveratrol against naphthalene-induced ‎oxidative stress in mice. Ecotoxicology and ‎Environmental Safety, 71:301-308. DOI: ‎‎10.1016/j.ecoenv.2007.08.023‎
  35. Siddhuraju, P. and Becker, K. (2003). Antioxidant ‎properties of various solvent extracts of total ‎phenolic constituents from three different ‎agroclimatic origins of drumstick tree (Moringa ‎oleifera Lam.) leaves. Journal of Agriculture and ‎Food ‎Chemistry, 51, 2144 2155. https://doi.org/10.102‎‎1/jf020444+‎
  36. Sofowora, A. (1993). Medicinal Plants and Traditional ‎Medicine in Africa; John Wiley and Sons, Ltd, Ife, ‎Nigeria, Pp. 55-201.‎
  37. Sreelatha, S. and Padma, P.R. (2009). Antioxidant activity ‎and total phenolic content of Moringa oleifera ‎leaves in two stages of maturity. Plant Food for ‎Human Nutrition, 64, 303-311. DOI: ‎‎10.1007/s11130-009-0141-0 ‎
  38. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, ‎M. and Telser, J. (2007). Free radicals and ‎antioxidants in normal physiological functions ‎and human disease. International Journal of ‎Biochemistry and Cell Biology, 39(1): 44-84. ‎DOI: 10.1016/j.biocel.2006.07.001 ‎
  39. Vyas, S., Kachhwaha, S. and Kothari, S.L. (2015). ‎Comparative analysis of phenolic contents and ‎total antioxidant capacity of Moringa oleifera ‎Lam. Pharmacognosy Journal, 7(1): 44-51. ‎DOI:10.5530/pj.2015.7.5‎
  40. Wright, R.J., Lee, K.S., Hyacinth, H.I., Hibbert, J.M., ‎Marvin, E.R., Wheatley, A.O and Asemota, H.N ‎‎(2017). An investigation of the antioxidant ‎capacity in extracts from Moringa oleifera plants ‎grown in Jamaica. Plants, 6(4) 1-8. ‎DOI: 10.3390/plants6040048‎
  41. Yang, L., Tan, G., Fu, Y., Feng J. and Zhang, M. (2010). ‎Effect of acute heat stress and subsequent stress ‎removal on function of hepatic mitochondrial ‎respiration, ROS production and lipid ‎peroxidation on broiler chickens. Comparative ‎Biochemistry and Physiology. 151 (2): 204-208. ‎DOI: 10.1016/j.cbpc.2009.10.010 ‎
  42. Yavuz, T., Delibao, N., YȃldȂrȂm, B., Altuntao, I., CandȂr, ‎O., Cora, A., Karahan, N., Ȃbrioim, E. and Kutsal, ‎A. (2004). Vascular wall damage in rats induced ‎by methidathion and ameliorating effect of ‎vitamin E and C. Archives of Toxicology, 78: ‎‎655-659. DOI: 10.1007/s00204-004-0593-9 ‎
  43. Yousef, M.I., Saad, A.A and El-Shennawy, L.K. (2009). ‎Protective effect of grape seed anthocyanidin ‎extract against oxidative stress induced by ‎cisplatin in rats. Food and Chemical Toxicology; ‎‎46:1176-1183.‎