Main Article Content

Abstract

Soil contamination by petroleum hydrocarbons is a major problem resulting from activities related to petroleum industry, automobile service stations and accidental release of oil in the soil. Bioremediation/biodegradation can be considered as an effective aid to clean up oil spills, aside from conventional methods that are uneconomical and produce residues that harm the surrounding biota. There are an estimated over 250 mechanic shops with more than 5000 technicians in Maiduguri. Mechanics working therein frequently spill oil which is a potent source of immunotoxicants and carcinogenic to humans and animals. The aim of this study was to screen for petrophilic bacterial isolates from engine oil contaminated soil, that can utilize crude oil as sole source of carbon for growth in Maiduguri Metropolis. Ten isolates from engine oil contaminated soils in Bola and Tashan Kano areas of Borno State were obtained. The bacteria were individually cultured in Bushnell Haas Mineral Salt Medium devoid of carbon source except for crude oil for 21 days at 370C. Bacterial growth from visible increased turbidity was enumerated by CFU/g on nutrient agar.  Pseudomonas sp. isolate exhibited relatively higher ability to grow on crude oil with TNTC followed by Bacillus sp., 6.7×104, Arthrobacter sp.,6.5×104, Flavobacterium sp.,6.2×104, Pseudomonas sp., 6×104, Nocardia sp.,5.9×104, Acinetobacter sp., 5×104, Bacillus sp., 5×104. Proteus sp., 4.7×104 and    Flavobacterium sp. 4×104.  It is therefore concluded that all the bacterial genera present in this study are effective hydrocarbon oil degraders.

Keywords

Bioremediation, Biodegradation, Petrophilic Bacteria, Engine Oil, Soil

Article Details

Author Biography

I. U. Hambali, Department of Veterinary Public Health and Preventive Medicine,University of Maiduguri,Maiduguri,Borno State,Nigeria

1. Department of Veterinary Public Health and Preventive      Medicine, University of Maiduguri, Maiduguri, Borno            State, Nigeria.

2. A senior Lecturer .

How to Cite
Environmental Assessment of Petrophilic Bacteria Associated with ‎Bioremediation and Biodegradation of Engine Oil Contaminated Soil in ‎Maiduguri. (2021). Sahel Journal of Veterinary Sciences, 18(4), 21-28. https://doi.org/10.54058/saheljvs.v18i4.264

How to Cite

Environmental Assessment of Petrophilic Bacteria Associated with ‎Bioremediation and Biodegradation of Engine Oil Contaminated Soil in ‎Maiduguri. (2021). Sahel Journal of Veterinary Sciences, 18(4), 21-28. https://doi.org/10.54058/saheljvs.v18i4.264

References

  1. Adebusoye, S. A., Amund, O. O., Ilori, M. O., Domeih, D. O., ‎and Okpuzor, J. (2008). Growth and biosurfactant ‎synthesis by Nigerian hydrocarbon-degrading ‎estuarine bacteria. Revista de Biología ‎Tropical, 56(4), 1603 611. doi:10.15517/rbt.v56i4.‎‎5746.‎
  2. Adsodun, J.K. and Mbagwu, J.S.C. (2008). Distribution of ‎heavy metals and hydrocarbon contents in an ‎alfisol contaminated with waste – lubricating oil ‎amended with organic wastes. Bioresource ‎Technology 99:3195-3204. ‎
  3. Aina, O. R., Atuanya, E. I., Oshoma, C. E., Omotayo, A. E., ‎and Olaleye, O. N. (2021). Biodegradation ‎potential of rhizospheric microorganisms of ‎rhizophora racemosa in crude oil contaminated ‎mangrove swamp in the Niger delta. African ‎Journal of Health, Safety and Environment, 2(2), ‎‎91-102.‎
  4. Ajona, M., and Vasanthi, P. (2021). Bioremediation of ‎petroleum contaminated soils–A review. Materials ‎Today: Proceedings 45(1).DOI: ‎‎10.1016/j.matpr.2021.01.949‎
  5. Aparna, C., Saitha, P., Himabindu, V., Alok, B., and ‎Anjaneyulu, Y. (2010). Evaluation of ‎bioremediation effectiveness on sediments ‎contaminated with industrial wastes. International ‎Journal of Environmental Science;1(4):607-620.‎
  6. Atlas, R. M. (1995). Hand Book of Microbiological Media. ‎CRC press, London, pp:175.‎
  7. Azubuike, C. C., Chikere, C. B. and Okpokwasili, G. C. ‎‎(2016). Bioremediation techniques – classification ‎based on site of application: principles, ‎advantages, limitations and prospects. World ‎Journal of Microbiology and Biotechnology. 32 ‎‎(11), 180.‎
  8. Chikere, C. B., Okpokwasili, G. C. and Chikere, B. O. (2012). ‎Bioreactor-based bioremediation of hydrocarbon-‎polluted Niger Delta marine sediment, Nigeria. ‎‎3 Biotechnology, 53 66. http://doi.org/10.1007/s13‎‎205-011-0030-8.‎
  9. Chikere, C. B. and Ekwuabu, C. B. (2014). Molecular ‎characterization of autochthonous hydrocarbon ‎utilizing bacteria in oil polluted sites at Bodo ‎community, Ogoni land, Niger Delta, Nigeria. Nig. ‎Journal of Biotechnology; 27:28-33 ‎
  10. Colaninno, P. M. (2021). Identification of Gram-Positive ‎Organisms. In Practical Handbook of ‎Microbiology (pp. 51-58). CRC Press.‎
  11. Colborn, T., Vom Saal, F. S. and Solo, A. M. (1993). ‎Developmental effects of endocrine-disrupting ‎chemicals in wild life and humans. Environment ‎Health Perspex.; 101(5): 378-84.‎
  12. Das, N. and Chandran, P. (2011). Microbial Degradation of ‎Petroleum Hydrocarbon Contaminants: An ‎Overview. Biotechnology Research International, ‎‎2011, Article ID:941810. http://dx.doi.org/10.4061‎‎/2011/941810.‎
  13. Delistraty, D. and Stone, A. (2007). Dioxins, metals, and fish ‎toxicity in ash residue from space heaters burning ‎used motor oil, Chemosphere, 68 (5), 907–914. ‎doi:10.1016/j. chemosphere.2007.01.070‎
  14. Dominguez-Rosado, E. and Pichtel, J. (2004). ‎Phytoremediation of soil contaminated with used ‎motor oil: II. Greenhouse studies. Environmental ‎Engineering Science, 21(2), 169-180.‎
  15. English, J. S. C., Dawe, R. S. and Ferguson, J. (2003). ‎Environmental effects and skin disease. British ‎Medical Bulletin, 68(1), 129-142.‎
  16. Eze, V. C., Okpokwasili, G. C. (2010). Microbial and other ‎related changes in Niger Delta River sediment ‎receiving industrial effluents. Continental Journal ‎of Microbiology; 4:15-24. ‎
  17. Okpokwasili, G.C. and Okorie, B. B. (1988). ‎Biodeterioration potentials of microorganisms ‎isolated from car engine lubricating oil. Tribology ‎International: ‎‎21:4: 215 220. ISSN 0301 679X, https://doi.org/10‎‎.1016/0301-679x(88)90020-5.‎
  18. Gunasinghe, Y. H. K. I. S., Rathnayake, I. V. N. and ‎Deeyamulla, M. P. (2021). Characterization of ‎toluene degrading bacterial species isolated from ‎soil. International Conference of the ‎Biotechnology Society of Nepal (ICBSN). ‎http://repository.kln.ac.lk/handle/123456789/2428‎‎4‎
  19. Ibe, F. C., Duru, C. E., Isiuku, B. O. and Akalazu, J. N. ‎‎(2021). Ecological risk assessment of the levels of ‎polycyclic aromatic hydrocarbons in soils of the ‎abandoned sections of Orji Mechanic Village, ‎Owerri, Imo State, Nigeria. Bulletin of the National ‎Research Centre, 45(1), 1-16.‎
  20. Ibiene, A. A., Orji, F. A. and Orji-Nwosu, E. C. (2011). ‎Microbial population dynamics in crude oil-‎polluted soil in the Niger Delta. Nigerian Journal of ‎Agriculture, Food and Environment; 7:8-13. ‎
  21. Irwin, R. J., VanMouwerik, M., Stevens, L., Sees, M. D. and ‎Basham, W. (1997). Environmental Contaminants ‎Encyclopedia. National Park Service, Water ‎ResourcesDivision, Fort Collins, Colorado.‎
  22. Jabir, D. M. and Lahmood, W. Y. (2021). Detection for ‎enzymatic activity for bacteria isolated from the ‎soil in polyethylene bags biodegradation. Materials ‎Today: Proceedings.‎
  23. Kaszycki, P. P., Przemyslaw P. M. and Kolocze, H. (2011). ‎Ex-Situ bioremediation of soil polluted with oily ‎waste: The use of specialized microbial consortia ‎for process bio augmentation. Ecological ‎Chemistry and Engineering S:18:83-92.‎
  24. Kumar, M., Leon, V., Materano, A.D.S. and Ilzins, O.A.A. ‎‎(2007). Halotolerant and thermotolerant Bacillus ‎sp, degrades hydrocarbons and produces tension-‎active emulsifying agent. World Journal. ‎Microbiol. Biotechnol ;23(2):211-220. ‎
  25. Kuppusamy, S., Thavamani, P., Venka,T. K., Lee. Y.B., ‎Naidu, R. and Megharaj, M. (2017). Remediation ‎approaches for polycyclic aromatic hydrocarbons ‎‎(PAHs) contaminated soils: technological ‎constraints emerging trends and future directions. ‎Chemosphere 168:944. ‎http://doi.org/10.1016/j.chemoshere. 2016.10.115. ‎
  26. Mandri, T. and Lin, J. (2007). Isolation and characterization ‎of engine oil degrading indigenous microorganisms ‎in Kwazulu-Natal, South Africa. African Journal of ‎Biotechnology, 6(1):23-27.‎
  27. Mishra, S., Jyot, J., Kuhad, R. C. and Lal, B. (2001). ‎Evaluation of inoculum addition to stimulate in ‎situ bioremediation of oily sludge-contaminated ‎soil. Applied Environmental Microbiology. 67, ‎‎1675-1681.‎
  28. Moyo, B. and Masika, P. J. (2009). Tick control methods ‎used by resource-limited farmers and the effect of ‎ticks on cattle in rural areas of the Eastern Cape ‎Province, South Afriica. Tropical Animal Health ‎and Production, 41(4), 517-523.‎
  29. Nathalia D. S., Alvarenga, Santos., Viniclus, R. R. and ‎Marco Tulio, C. F. (2020). Review of engine ‎journal bearing tribology in start-stop applications. ‎http://doi.org/10.1016/j.engfailanal.2019.104344.‎
  30. Nivedita, P. and Krushna, P. S. (2020). Characterization of ‎waste engine oil (WEO) pyrolytic oil and diesel ‎blended oil. Fuel Properties and ‎Compositional Analysis. ‎http://doi.org/10.1016/j.matpr.2020.02.679.‎
  31. Nweke, C. O. and Okpokwasili, G. C.(2004). Effects of ‎bioremediation treatments on the bacterial ‎populations of soil at different depths. Nigeria ‎Journal of Microbiology: 18: 362-372.‎
  32. Obire, O. and Nwanbeta, O. (2002). Effects of refined ‎petroleum hydrocarbon on soil physiochemical ‎and bacteriological characteristics. Journal of ‎Applied Science and Environmental Management: ‎‎6 (1):34-44.‎
  33. Okerentugba, P. O. and Ezeronye, O. U. (2003). Petroleum ‎Degrading Potentials of Single and Mixed ‎Microbial Cultures Isolated from Rivers and ‎Refinery Effluents in Nigeria. African Journal of ‎Biotechnology: 2 (9): 293-295.‎
  34. Oko-Oboh, E., Oviasogie, P. O., Senjodi, B.A. and Oriafo, S. ‎‎(2016). Characterization of alluvial soils in a ‎derived savannah ecology in Edo State Southern ‎Nigeria. Nigerian Journal of Agriculture, Food ‎and Environment:12(3):204-209.‎
  35. Okonokhu, B. O., Ikhajagbe, B., Anoliefo, G. and Emede, T. ‎‎(2007). The effects of Spent Engine Oil on Soil ‎Properties and Growth of Maize (Zea mays L.). ‎Journal of Applied Sciences and Environmental ‎Management (ISSN:1119-8362) Vol 11Num ‎‎3.11.10. 4314/jasem. V11i3. 55162.‎
  36. Onwa Ndubuisi, C., Onochie, C. C. and Nwadiogbu, I. ‎‎(2018). Isolation of hydrocarbon degrading ‎bacteria species from soil contaminated with ‎lubricating oil in Enugu South East Nigeria. ‎International Digital Organisation for Scientific ‎Research (idosr jounal of applied sciences): ‎‎3(1):76-85. ‎
  37. Onwurah, I. N. E., Ogugua, V. N., Onyike, N. B. Ochonogor, ‎A. E. and Otitoju, O. F., (2003). Crude Oil Spills in ‎the Environment, Effects and some Innovative ‎Clean-up Biotechnologies. International Journal ‎of Environmental Research, 1(4), pp: 307-320.‎
  38. Perez-Cadahia, B., Lafuente, A., Cabaleiro, T., Pasaro, E., ‎Mendez, J. and Laffon, B. (2007). Initial Study on ‎the effects of Prestige oil on human health. ‎EnvironmentInternational; 33:176-185. ‎
  39. Prince, R. C. (1993). Petroleum spill bioremediation in ‎marine experiments. Microbiology Review. ‎‎19:217-242.‎
  40. Prenafeta-Boldu, X. F., Kuhn, A., Dmam, L., Anke, H. and ‎Bont, J. D. (2001). Isolation and characterization ‎of fungi growing on volatile aromatic ‎hydrocarbons as their sole carbon and energy ‎source. Mycology Research. 4:477-484.‎
  41. Alvarez, P. J. J. and Vogel, T. M. (1991). Substrate ‎interaction of benzene, toluene, and paraxylene ‎during microbial degradation by pure cultures and ‎mixed culture aquifer slurries. Appliedand ‎Environmental Microbiology: 57(10): 2981-2985.‎
  42. Pritchard, P.H., Mueller, J.G. and Rogers, J.C. (1992). Oil spill ‎bioremediation: experiences, lessons and results ‎from the Exxon Valdez oil spill in Alaska. ‎Biodegradation: 3: 315 335:https://doi.org/10.100‎‎7/BF00129091.‎
  43. Propst, T, L., Lochmiller, R. L., Qualis, C. W. Jr. and McBee, ‎K. (1999). In situ (mesocosm) assessment of ‎immunotoxicity risks to small mammals inhabiting ‎petrochemical waste sites. Chemosphere: 38: 1049-‎‎1067.‎
  44. Rahman, K. S., Rahman T., Laskshman, P. and Banat, I. ‎‎(2002). Occurrence of crude oil degrading bacteria ‎in gasoline and diesel station soils. Journal of Basic ‎Microbiology, 42: 284-291.‎
  45. Roling, W. F. M., Milner, M. G., Jones, D. M., Lee, K., Daniel, ‎F., Swannell, R. J. P. and Head, I. M. (2002). ‎Robust hydrocarbon degradation and hydrocarbon ‎degradation and dynamics of bacterial ‎communities during nutrient-enhanced oil spill ‎bioremediation. Applied Environmental. ‎Microbiology, 68(11):5537-5548.‎
  46. Sarma, A. and Sarma, H. (2010). Enhanced biodegradation ‎by some microbial isolates supplemented with ‎heavy metals. International Journal of ‎Biotechnology: 6:441-448. ‎
  47. Sepahi, A. A., Golpasha, I. D., Emanmi, M. and Nakhoda, ‎A. M. (2008). Isolation and characterization of ‎crude oil degrading Bacillus spp. Iran Journal of ‎Environmental Health Science and Engineering: ‎‎5(3):149-154‎
  48. Speight, J.G (1991). The chemistry and technology of ‎petroleum. Lewis Publishers, Marcel Dekker, New ‎York, pp.30‎
  49. Stegmann, R., Lolter, S. and Heerenklage, J. (2011). ‎Biological treatment of oil-contaminated soils in ‎bioreactors. International Journal of ‎Microbiology: 4(3):231-235.‎
  50. Udeani, T. K. C., Obroh, A. A., Okwuosa, C. N., Achukwu, P. ‎U., and Azubike, N. (2009). Isolation of bacteria ‎from mechanic workshops’ soil environment ‎contaminated with used engine oil. African journal ‎of Biotechnology: 8: 22‎
  51. Vilayutham, T., Arutchelvan, V., Nagarajan, S. and ‎Muralikrishnan, V. (2012). Isolation and ‎identification of polycyclic aromatic hydrocarbon-‎degrading bacteria from crude oil exploration bore ‎well sludge. BioremediationJournal:16(3):141-‎‎146. ‎
  52. Vitalina, L., Oleksandr, T. and Yevheniia, A. (2020). ‎Environmental safety of motor transport enterprises within the urban areas. Journal of Ecological ‎Engineering: 21: (4), 2020.‎