Main Article Content

Abstract

A cross sectional study was conducted to detect Extended-Spectrum β-lactams (ESBLs) producing E. coli and Klebsiella species in dressed chicken meat in Maiduguri Metropolis, Borno State, Nigeria. A total of 384 samples were collected (chicken meat swab and intestinal contents) from two (Abbaganaram and Monday Markets) live bird markets (LBMs) in Maiduguri Metropolitan Council (MMC) and one (Tashan Bama) in Jere Local Government Area (LGA). Colony count, culture, isolation and determination of microbial quality of meat were performed based on standard bacteriological protocols. Biochemical tests were conducted to differentiate the isolates, and antimicrobial susceptibility test was performed using Kirby Bauer disk diffusion method. Tashan Bama LBM had 6.4 x 107 CFU/g dressed chicken meat contamination, while, E. coli and Klebsiella species had the highest number of isolates, 178 (46.4%) 28 (7.3%), respectively. The study also revealed 14 (93.3%) and 5 (71.4%) β‑lactam antimicrobial resistant isolates due to E. coli and Klebsiella species, respectively. The phenotypic expression of multi_drug resistance (n=10) patterns of those isolates; further revealed the β‑lactam producing E. coli and Klebsiella species in dressed chicken meat. Critical control points should be established to minimize contamination and the zoonotic risk of multi-drug resistance pathogens in chicken meat in Maiduguri


 


 

Keywords

Antimicrobial resistance, ESBL, E. coli, Foodborne infections, Klebsiella‎

Article Details

Author Biographies

A. S. Sai’du‎, +2348039359544

Lecturer I

Department of Veterinary Public Health & Preventive Medicine,

Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State. Nigeria.

Specialty: Public Health & Epidemiology, with special interest in Infectious Diseases and Zoonoses 

R. P. Apollos, Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

Project  Candidate

Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria.

S. Mohammed, Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

Lecturer I

Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

 

F. E. Ejeh, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

Senior Lecturer

Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri. Maiduguri.

A. O. Tijjani, Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

Reader,

Deoartment of Veterinary Public Health & Preventive Medicine,

University of Maiduguri

B. Ahmed, Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

Senior Chief Laboratorian,

Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

E. Wafar, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

Chief Laboratorian,

Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB, 1069, Maiduguri-600230, Borno State, Nigeria

How to Cite
Microbial Quality and Phenotypic Profile of Extended Spectrum Beta–‎Lactamase Producing Escherichia coli and Klebsiella species Contamination ‎in Dressed Chicken Meat in Maiduguri Metropolis, Northeastern Nigeria. (2022). Sahel Journal of Veterinary Sciences, 19(1), 22-30. https://doi.org/10.54058/saheljvs.v19i1.277

How to Cite

Microbial Quality and Phenotypic Profile of Extended Spectrum Beta–‎Lactamase Producing Escherichia coli and Klebsiella species Contamination ‎in Dressed Chicken Meat in Maiduguri Metropolis, Northeastern Nigeria. (2022). Sahel Journal of Veterinary Sciences, 19(1), 22-30. https://doi.org/10.54058/saheljvs.v19i1.277

References

  1. Abdissa, R., Haile W., Fite, A. T., Beyi, A. F., Agga, G. E., ‎Edao, B. M., Tadesse, F., Korsa, M.G., Beyene, T., ‎Beyene, T. J. and De Zutter, L.(2017). Prevalence ‎of Escherichia coli O157:H7 in beef cattle at ‎slaughter and beef carcasses at retail shops in ‎Ethiopia. BMC Infect Dis., 17: 1-6. ‎https://doi.org/10.1186/s12879-017-2372-2‎
  2. Adzitey, F., Teye, G. A, Kutah, W. N. and Adday, S. (2011). ‎Microbial Quality of Beef Sold on Selected ‎Markets in the Tamale Metropolis in the Northern ‎Region of Ghana. Livestock Res. Rural Dev., ‎‎23(1): 5. http://hdl.handle.net/123456789/953‎
  3. Agerso, Y., Jensen, J. D., Hasman, H., and Pedersen, K. ‎‎(2014). Spread of extended spectrum ‎cephalosporinase-producing Escherichia ‎coli clones and plasmids from parent animals to ‎broilers and to broiler meat in a production without ‎use of cephalosporins. Foodborne Path. Dis., 11, ‎‎740–746. doi: 10.1089/fpd.2014.1742.‎
  4. Bennett, S. D, Walsh, K. A. and Gould, L. H. (2013). ‎Foodborne disease outbreaks caused by Bacillus ‎cereus, Clostridium perfringens, and ‎Staphylococcus aureus—United States, 1998–‎‎2008. Clin. Infect. Dis., 57: 425–433.‎
  5. Berkel, B. M., Boogaard B. V. and Heijnen, C. ‎‎(2004). Preservation of fish and meat. Agromisa ‎Foundation, Wageningen. The Netherlands, 8: 78-‎‎80.‎
  6. Blodgett, R. (2008). Mathematical treatment of plates with ‎colony counts outside the acceptable range. Food ‎microbiol., 25: 92-8. ‎
  7. Börjesson, S., Ny, S., Egervarn, M., Bergstrom, J., ‎Rosengren, A., Englund, S., et al. (2016). Limited ‎Dissemination of Extended-Spectrum beta-‎Lactamase-and Plasmid-Encoded AmpC-‎Producing Escherichia coli from Food and Farm ‎Animals, Sweden. Emerg. Infect. Dis., 22(4): 634–‎‎40. pmid:26982890.‎
  8. Bortolaia, L. G., Bisgaard, M., Larsen, J. and Bojesen, A. M. ‎‎(2010). Escherichia coli producing CTX-M-1, -2, ‎and -9 group β-lactamases in organic chicken egg ‎production. Antimicrobial Agents Chem., 54(8): ‎‎3527–3528. ‎
  9. Briñas, L., Moreno, M. A. and Zarazaga, M. (2003). ‎Detection of CMY-2, CTX-M-14, and SHV-12β-‎lactamases in Escherichia coli fecal-sample ‎isolates from healthy chickens. Antimicrobial ‎Agents and Chem., 47(6): 2056–2058. ‎
  10. Bunning, V. K., Lindsay, J. A. and Archer, D. L. (1997). ‎Chronic health effects of microbial foodborne ‎disease. World Health Stat., Quarterly, 50(1-2): ‎‎51–56. ‎
  11. Carattoli, A. (2013). Plasmids and the spread of ‎resistance. Intl. J. Med. Microbiol. 303: 298–304. ‎doi: 10.1016/j.ijmm.2013.02.001.‎
  12. Clark, W. M. and Lubs, A. H. (1978). Oyo State ‎Government of Nigeria (OYSGN), Oyo State ‎of Nigeria Gazette. The Meat Edict. 23 (31): ‎June 1978-Part A.‎
  13. Codex Alimentarius Commission, FAO/WHO (2011). Joint ‎FAO/WHO Food Standards Programme Codex ‎Committee on Contaminants in Foods. Fifth ‎Session, 21-25 March 2011.‎
  14. Cohen, N., Ennaji, H., Bouchrif, B., Hassar, M. and Karib, ‎H. (2007). Comparative Study of Microbiological ‎Quality of Raw Poultry Meat at Various Seasons ‎and Different Slaughter Process in Casablanca. ‎Morocco J. Appl. Poult. Res., 16(4): 502-508.‎
  15. Goksoy, E. O., Kirkan, S. and Kok, F. (2004). ‎Microbiological Quality of broiler carcasses during ‎processing in two slaughterhouses in Turkey. Poult ‎Sci., 83(8): 1427-32. ‎
  16. Henry, C. J. K. and Xin, J. L. W. (2014). Application of ‎Hazard Analysis Critical Control Point in the Local ‎Manufacture of Ready-to-Use Therapeutic Foods ‎‎(RUTFs). Food and Nutr. Bull., 35(2): S57–S63. ‎
  17. Iramiot, J., Kajumbula, H., Bazira, J., Kansiime, C. and ‎Asiimwe, B. B. (2020). Antimicrobial resistance at ‎the human-animal interface in the communities of ‎Kasese District, South Western Uganda. Sci. Rep., ‎‎10, 14737 ‎
  18. Karmali, A. M., Gannon, V. and Sargeant, M. J. (2010). ‎Verocytotoxin-producing Escherichia coli (VTEC), ‎Vet. Microbiol., 140(3-4): 360-370.‎
  19. Katakweba, A. A. S., Mtambo, M. M. A., Olsen, J. E. and ‎Muhairwa, A. P. (2012). Awareness of human ‎health risks associated with the use of antibiotics ‎among livestock keepers and factors that ‎contribute to selection of antibiotic resistance ‎bacteria within livestock in Tanzania. Livestock ‎Res. Rural Dev., 24(10): 170. Retrieved March 27, ‎‎2022, from ‎http://www.lrrd.org/lrrd24/10/kata24170.htm
  20. Kwoji, I. D., Musa, J. A., Daniel, N., Mohzo, D. L., Bitrus, A. ‎A., Ojo, A. A. and Ezema, K. U. (2019). Extended-‎spectrum beta-lactamase-producing Escherichia ‎coli in chickens from small-scale (backyard) ‎poultry farms in Maiduguri, Nigeria. Intl. J. One ‎Health, 5: 26-30. ‎www.onehealthjournal.org/vol.5/4.pdf
  21. McGaugh, S. E. and Noor, M. A. (2012). Genomic impacts ‎of chromosomal inversions in parapatric ‎Drosophila species. Philosophical transactions of ‎the Royal Society of London. Series B, Biol. ‎Sci., 367(1587): 422–429. ‎
  22. Miller, R. K. (2002). Factors affecting the quality of raw ‎meat. Meat Process., 27–63. ‎https://doi.org/10.1533/9781855736665.1.27.‎
  23. Mohammed, Y., Gadzama, G. B., Zailani, S. B. and ‎Aboderin, A. O. (2016). Characterization of ‎extended-spectrum beta-lactamase from ‎Escherichia coli and Klebsiella species from North ‎Eastern Nigeria. J. Cli. Diagn. Res, JCDR, 10(2), ‎DC07.‎
  24. Mohamed-Noor, S. E., Shuaib, Y.A., Suliman, S. E. and ‎Aballa, M. A. (2012). Study of Microbial ‎Contamination of Broilers in Modern Abattoirs in ‎Khartoum State. Food Tech., 36(1): 74-80.‎
  25. Nafarnda, W. D., Ajayi, I. E., Shawulu, J. C., Kawe, M. S., ‎Omeiza, G. K., Sani, N. A., Tenuche, O. Z. and ‎Dantong, D. D. (2012). Bacteriological Quality of ‎Abattoir Effluents Discharged into Water Bodies in ‎Abuja, Nigeria. ISRN Vet. Sci. pp.15.‎
  26. National Action Plan for Antimicrobial Resistance (2017). https://ncdc.gov.ng/themes/common/docs/ ‎protocols/77_1511368219.pdf. Accessed ‎‎25/03/2022.‎
  27. Nordmann, P., Naas, T. and Poirel, L. (2011). Global spread ‎of carbapenemase-producing Enterobacteriaceae. ‎Emerg. Infect. Dis., 17: 1791–1798.‎
  28. Nsofor, C.A. and Iroegbu, C. U. (2013). Antibiotic resistance ‎profile of Eschetichia coli isolated from five major ‎geopolitical zones of Nigeria. J. Bacteriol. Res., ‎‎5(3): 29-34.‎
  29. Okorie-Kanu, O. J., Madubuike, U. A. Ezenduka, E. V., ‎Mgbeahuruike, A. C., Okorie-Kanu, C. O., ‎Ugwuijem, E. E., Okorie-Kanu, C.O., Agbowo, P., ‎Olorunleke, S. and Nwanta, J.A. (2020). ‎Occurrence and antibiogram of Listeria species in ‎raw pork, beef and chicken meats marketed in ‎Enugu State, Southern Nigeria. Vet. World, 13(2): ‎‎317-325. ‎https://doi.org/10.1371/journal.pone.0232913‎
  30. ‎ Onuoha, S. C., S.C. Eluu and Okata, M.O. 2016. In-vitro ‎Antimicrobial Resistance of Shigella and ‎Salmonella species Recovered from Abattoir ‎effluent in Afikpo, South Eastern Nigeria. ‎Int. J. Curr. Microbiol. App. Sci., 5(4): 488_497. doi:http://dx.doi.org/10.20546/ijcmas.2016.504.05‎
  31. Projan, S. J. (2010). Francis Tally and the discovery and ‎development of tigecycline: a personal ‎reminiscence. Clinical infectious diseases: an ‎official publication of the Infect. Dis. Soc. Am., 50 ‎‎(1): S24–S25. https://doi.org/10.1086/647941‎
  32. Randall, L. P., Clouting, C., Horton, R. A., Coldham, N. G., ‎Wu, G., Clifton-Hadley, F. A., Davies, R.H. and ‎Teale, C. J. (2011). Prevalence of Escherichia coli ‎carrying extended-spectrum β-lactamases (CTX-M ‎and TEM-52) from broiler chickens and turkeys in ‎Great Britain between 2006 and 2009. The J. ‎Antimicrobial Chem., 66(1): 86–95. ‎
  33. https://doi.org/10.1093/jac/dkq396‎
  34. Rasheed, M. U., Thajuddin, N., Ahamed, P., Teklemariam, ‎Z. and Jamil, K. (2014). Antimicrobial drug ‎resistance in strains of Escherichia coli isolated ‎from food sources. Rev. Instituto de Med. Trop. ‎São Paulo, 56(4): 341–346. ‎
  35. Rottier, W. C., Ammerlaan, H. S. M. and Bonten, M. J. M. ‎‎(2012). Effects of confounders and intermediates ‎on the association of bacteraemia caused by ‎extended-‎spectrum β lactamase producing Enterobacteriaceae and patient outcome: a meta-analysis, J. ‎Antimicrobial Chem., 67(6): 1311–1320. ‎
  36. Schrijver, R., Stijntjes, M., Rodríguez-Baño, J., Tacconelli, ‎E., Babu-Rajendran N. and Voss A. ‎‎(2018). Review of antimicrobial resistance ‎surveillance programmes in livestock and meat in ‎EU with focus on humans. Clin. Microbiol. ‎Infect. 24, 577–590. 10.1016/j.cmi.2017.09.013.‎
  37. Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M., Kamal, M. A. ‎‎(2015). Antibiotic resistance and extended ‎spectrum beta-lactamases: types, epidemiology ‎and treatment. Saudi J. Biol. Sci., 22: 90–101.‎
  38. Sharma, K. P. and Chattopadhyay, U. K. (2015). ‎Assessment of microbial load of raw meat samples ‎sold in open markets of city of Kolkata. J. Agric. ‎Vet. Sci., 8: 24–7.‎
  39. Silvia, L. M. and Jacoby, A. G. (2014). Extended Spectrum ‎Beta-Lactamases. Up-to-date. Antimicrobial ‎Agents Chem., 58: 833. ‎
  40. ‎ Steve, P. (2017). Antibodies for the Prevention Treatment, ‎and Preemption of Infectious Diseases. Pp. 611–‎‎20. https://doi.org/10.1002/9783527699124.ch18.‎
  41. Thrushfield, M. (2013). Veterinary Epidemiology. (6th ‎Edition). Elsevier Science. Available at: ‎https://www.perlego.com/book/1898785/veterinary-epidemiology-pdf (Accessed Oct., 12th, 2021).‎
  42. Tille, P.M. (2014). Bailey and Scott’s diagnostic ‎microbiology, Thirteen edition, Mosby, Inc., an ‎affiliate of Elsevier Inc., 3251 Riverport Lane, St. ‎Louis, Missouri, 63043.‎
  43. WHO, World Health Organization (1982). World Health ‎Organisation, Geneva. Guidelines for organization ‎and management of surveillance of food-borne ‎disease. WHO monograph No. VPH/82. 39.‎
  44. WHO, World Health Organization (2015). Global Action ‎Plan on Antimicrobial Resistance. ‎https://www.who.int/publications/i/item/97892415‎‎09763. (Accessed Oct., 11th, 2021).‎