Main Article Content

Abstract

Investigations established that birds used photoperiod to predict and adjust seasonal changes in their environment through predictive changes. Understanding the interaction of photoperiods and exogenous melatonin will provide information on physiological activities and guide in better poultry management. In this study, thirty matured male helmeted guinea fowls were utilized. They were randomly assigned to three groups (n = 10) of different photoperiodic regimes: short-day (SD; 8L:16D), control (CTR; 12L:12D) and long-day (LD; 16L:8D). Each of these groups was further divided into two groups: melatonin (Mel; 1 mg/kg) or without melatonin. The experiment lasted for a period of eight weeks. The results obtained from the SD + Mel group showed that the thyroidal follicles were lined by simple squamous follicular cells and serrated edges, while the SD without Mel had smooth follicular edges with similar lining. The LD + Mel and LD without Mel appeared normal, with similar histological features observed in the CTR; the lining was dominated with simple cuboidal epithelium with very few squamous cells. The follicular diameter across the groups was statistically significant (p < 0.0001). The LD + Mel group had the largest follicular diameter, while the lowest was in SD without melatonin. The thyroid glands were both positive for Periodic Acid Schiff and Alcian Blue with varied percentage of positive areas. Overall, the activity of the thyroid gland in the guinea fowl is influenced by long photoperiod and exogenous melatonin. Its influence on the thyroid glands mimics the reproductively active phase of the guinea fowl.

Keywords

Guinea fowl Histomorphology Melatonin Photoperiod Thyroid gland

Article Details

How to Cite
Histomorphological Changes in the Thyroid Gland of Guinea Fowl (Numida meleagris) Exposed to Different Photoperiod Regimens and Exogenous Melatonin. (2026). Sahel Journal of Veterinary Sciences, 22(4), 11-16. https://doi.org/10.54058/1yx15r28

How to Cite

Histomorphological Changes in the Thyroid Gland of Guinea Fowl (Numida meleagris) Exposed to Different Photoperiod Regimens and Exogenous Melatonin. (2026). Sahel Journal of Veterinary Sciences, 22(4), 11-16. https://doi.org/10.54058/1yx15r28

References

  1. Abdul-Rahman, I.I., Awumbila, B., Jeffocate, I.A., Robinson, J.E. and Obese, F.Y. (2015). Sexing in guinea fowls (Numida meleagris). Poult Sci., 94: 311-318. doi: 10.3382/ps/peu067
  2. Avornyo, F.K., Salifu, S., Panyan, E.K., Al Hassan, B.I., Ahiagbe, M. and Yeboah, F. (2016). Characteristics of guinea fowl production systems in northern Ghana: A baseline study of 20 districts in Northern Ghana. LRRD, 28: 134.
  3. Azeez, I.A., Omirinde, J.O., Chomo, J.J. and Olopade, J.O. (2023). Brain Gross Anatomy and Cerebellar Histology of the Cattle Egret. Folia Vet., 67(2), 89-101. doi: 10.2478/fv-2023-0020
  4. Azeez, I.A., Hena, .SA., Ogwujo, P.O., Omirinde, J.O., Akinsola, O.M., Plang, N.J. and Gosomji, I.J. (2022). Comparative skin anatomy of the Nigerian local dogs and pigs. SVJ., 5(1): 158 doi: 10.36759/svj.2021.158
  5. Baltaci, A.K., Mogulkoc, R., Kul, A., Bediz, C.S. and Ugur, A. (2004). Opposite effects of zinc and melatonin on thyroid hormones in rats. Toxicology ,195: 69–75. doi: 10.1016/j.tox.2003.09.001
  6. Baltaci, A.K., Mogulkoc, R., Bediz, C.S., Kul, A. and Ugur, A. (2003). Pinealectomy and zinc deficiency have opposite effects on thyroid hormones in rats. Endocr. Res., 29: 473–481. doi: 10.1081/ERC-120026953
  7. Bancroft, J.D. and Gamble, M. (2013). Theory and Practice of Histological Techniques. 7th Edition, Churchill Livingstone of Elsevier, Philadelphia, 172-186.
  8. Baso A, Bello UM, Sulaiman MH, Gosomji IJ, Omirinde OJ, Zubairu M, Abubakar MT (2022). Photoperiodic-dependent histomorphological changes in the excurrent duct system of helmeted guinea fowl subjected to short day (8L:16D), long-day (16L:8D) light/dark cycles and exogenous melatonin. Vet Anim Sci., 19:100282. doi: 10.1016/j.vas.2022.100282
  9. Bhattacharya, K., Sengupta, P., Dutta, S., 2019. Role of melatonin in male reproduction. Asian Pac. J. Reprod. 8, 211–219. doi: 10.4103/2305-0500.268142
  10. Dawson, A., King, V.M., Bentley, G.E. and Ball, G.F. (2001). Photoperiodic control of seasonality in birds. J. Biol. Rhythms,16(4): 365-80. doi: 10.1177/074873001129002079
  11. Dzerzhynsky, M.E., Gorelikova, O.I. and Pustovalov, A.S. (2006). The interaction of the thyroid gland, pineal gland and immune system in chicken. Reprod. Biol., 6(2): 79-85.
  12. Fischer, T.W., Kleszczyński, K., Hardkop, L.H., Kruse, N. and Zillikens, D. (2013). Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2'-deoxyguanosine) in ex vivo human skin. J. Pineal Res., 54:303-312. doi: 10.1111/jpi.12018
  13. Follet, B.K. and Nicholls, T.J. (1984). Photorefractioness in Japanese quail possible involvement of the thyroid gland. J. Exp. Zool., 232:573-80. doi: 10.1002/jez.1402320325
  14. Gordon, J., Morley, J.E. and Hershman, J.M. (1980). Melatonin and the thyroid. Horm. Metab. Res., 12: 71–73. doi: 10.1055/s-2007-996203.
  15. Gosomji, I.J., Bello, U.M., Dzenda, T., Baso, A., Arukwe, A. and Aire, T.A. (2024). Influence of photoperiod and exogenous melatonin on testis morpho-physiology of sexually mature guinea fowl (Numida meleagris). Anim. Reprod. Sci., 263, 107410. doi: 10.1016/j.anireprosci.2024.107410.
  16. Hena, S.A., Sonfada, M.L., Shehu, S.A., Jibir., M., Bello, A., Omirinde, J.O. and Gosomji, I.J. (2018). Determination of the Proportions of Muscle Fibre Types from Selected Muscles of the Forelimb: A Comparative Study of Cattle (Bos taurus indicus) and One-humped Camel (Camelus dromedaries). J. Vet. Anat., 11(1), 39-52. doi: 10.21608/JVA.2018.45055
  17. Karbownik, M., Stasiak, M., Zasada, K., Zygmunt, A. and Lewinski, A. (2005). Comparison of potential protective effects of melatonin, indole-3-propionic acid, and propylthiouracil against lipid peroxidation caused by potassium bromate in the thyroid gland. J. Cell Biochem., 95: 131-138. doi: 10.1002/jcb.20404.
  18. Kiernan, J.A. (2015). Histological and Histochemical Methods: Theory and Practice. 5th edition, Scion Publishing, p. 571. doi: 10.5603/FHC.a2016.0007
  19. Kulczykowska, E. and Sanchez-Vazquez, F.J. (2010). Neurohormonal regulation of feed intake and response to nutrient in fish: Aspects of feeding rhythm and stress. Aquac. Res., 41(5): 654-667. doi: 10.1111/j.1365-2109.2009.02350.x
  20. Mattsson, A., Sjöberg, S., Kärrman, A. and Brunström, B. (2019). Developmental exposure to a mixture of perfluoroalkyl acids (PFAAs) affects the thyroid hormone system and the bursa of Fabricius in the chicken. Sci. Rep., 9(1), 1-14. doi: 10.1038/s41598-019-56200-9
  21. Migaud, H., Taylor, J.F., Taranger, G.L., Davie, A., Cerdá-Reverter, J.M., Carrillo, M., Hansen, T. and Bromage, N.R. (2006). A comparative ex vivo and invitro study of day and night perception in teleosts species using the melatonin rhythms. J. Pineal Res., 41: 42-52. doi: 10.1111/j.1600-079X.2006.00330.x
  22. Moghanlo, D. M, and Mohammadpour, A.A. (2018). Anatomy and histomorphology of thyroid, parathyroid and ultimobranchial glands in Guinea fowl (Numida meleagris). Comp. Clin. Path.., 28: 225-231. doi: 10.1007/s00580-018-2819-x
  23. Okyere, K., Kagya-Agyemang, J.K., Yaw, A.S., Asabere-Ameyaw, A. and Kyere, C.G. (2020). Effect of season and different dietary protein level on production and reproductive performance and egg characteristics of indigenous guinea fowl (Numida meleagris) in the middle belt of Ghana. WJARR., 08: 317-329. doi: 10.30574/wjarr.2020.8.3.0486
  24. Paul, B., Islam, M. N., Bhuiyan, M.J., Islam, M.N. and Adhikary, G.N. (2011). Histology and histometry of the thyroid gland of indigenous chicken (Gallus gallus) of Bangladesh. Int. J. Biol. Res., 11(1): 22-28.
  25. Rao, M.V. and Chhunchha, B. (2010). Protective role of melatonin against the mercury induced oxidative stress in the rat thyroid. Food Chem Toxicol, 48: 7-10. doi: 10.1016/j.fct.2009.06.038.
  26. Sakamoto, S., Nakamura, K., Inoue, K. and Sakai, T. (2000). Melatonin stimulates thyroid stimulating hormone accumulation in the thyrotropes of the rat pars tuberalis. Histochem. Cell Biol., 114:213–218. doi: 10.1007/s004180000188.
  27. Salehi, B., Sharopov, F., Fokou, P.V.T., Kobylinska, A., Jonge, L.D., Tadio, K., Sharifi-Rad, J., Posmyk, M.M., Martorell, M. and Martin, N. (2019) Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells. 8(7):681. doi: 10.3390/cells8070681
  28. Thiele, H.H. (2009). light stimulation of commercial layers, Lohmann information 44(2): pp.40.
  29. Umosen, A.D., Oneyeanusi, B.I., Salami, S.O., Nzalak, J.O., Imam, J. and Ibe, C.S. (2008) observation on the wattle of adult helmeted Guinea fowl (Numida meleagris galeata) Int. J. Poult. Sci., 7(12):1204-1206. doi: 10.3923/ijps.2008.1204.1206
  30. Walton, J.C., Weil, Z.M. and Nelson, R.J. (2011). Influence of Photoperiod on Hormones, Behavior, and Immune Function. Front. Neuroendocrinol., 32: 303–319. doi: 10.1016/j.yfrne.2010.12.003
  31. Wilson, F.E. and Reinert, B.D. (1993). The thyroid and photoperiodic control of seasonal reproduction in American tree sparrows (Spizella arborea). J. Comp. Physiol. B.,163: 563–573. doi: 10.1007/BF00302115.
  32. Xia, Y., Chen, S., Zeng, S., Zhoa, Y., Zhu, G., Yin, Y., Wang, W., Hardeland, R. and Ren, W. (2019). Melatonin in microphages biology. Current understanding and future perspective. Pineal Res., 66(2): e12547. doi: 10.1111/jpi.12547.
  33. Yoshimura, T., Yasuo, S., Watanabe, M., Iigo, M., Yamamura, T., Hirunagi, K. and Ebihara, S. (2003). Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature, 426, 178–181. doi: 10.1038/nature02117.
  34. Yoshimura, T. (2013). Thyroid hormone and seasonal regulation of reproduction. Front. Neuroendocrinol., 4(3):157-66. 04.002. doi: 10.1016/j.yfrne.2013.04.002.

Similar Articles

You may also start an advanced similarity search for this article.