Main Article Content

Abstract

This study was conducted to evaluate haematological and biochemical parameters of haemogregarine-infected (h-infected) and non-infected African hinge-back tortoises in Ibadan, Nigeria. Blood samples were collected from 120 tortoises, of which 70 were Kinixys belliana and 50 were K. homeana. Stained thin smears were examined for haemogregarines using light microscope. Haematological and biochemical analyses were carried out following standard procedures. A total of 91(75.83 %) tortoises were positive for haemogregarines. Significantly (P<0.05) lower values of haematocrit (23.92 %), haemoglobin (5.21g/dl) and mean corpuscular haemoglobin concentration (MCHC) (21.78 %) were recorded for h-infected tortoises with haematocrit (33.29 %), haemoglobin (8.31g/dl) and MCHC (24.96 %). Higher values of white blood cells (WBC) (7.26 x 109/L) and lymphocytes (2.71x109/L), were observed in h-infected than non-infected with WBC (5.58 x 109/L) and lymphocytes (2.15x109/L). Higher values of haematocrit and haemaglobin were recorded for K. Homeana.  Males had higher haematocrit (27.27 %) and WBC (7.09 x 109/L) than females with haematocrit (24.35 %) and WBC (6.93 x 109/L). Females had higher MCHC, haemoglobin and calcium values than males.The lower values of haematocrit, haemoglobin and MCHC obtained for h-infected tortoises were expected since haemogregarines are usually found intra-erythrocytic in their host thereby destroying affected erythrocytes and causing a decrease in haematocrit value. Higher WBC counts in h-infected tortoises is typical in diseased conditions. The higher level of calcium in female tortoises is due to their reproductive cycle especially vitellogenesis and egg formation. Hypo-proteinaemia recorded in h- infected tortoises was attributed to parasitism. It is concluded that majority of haematological and biochemical analytes showed considerable variations with level of infection status, species and gender.

Keywords

Kinixys belliana; Kinixys homeana; Haematology; Plasma biochemistry; Haemogregarine parasites‎

Article Details

Author Biography

O. K. Adeyemo, University of Ibadan

Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine,

Research Innovation and Strategic Partnership (RISP), University of Ibadan.

How to Cite
Haematologic and Biochemical Parameters of Haemogregarine-infected ‎and Non-infected African Hinge-Back Tortoises in Ibadan, Nigeria. (2020). Sahel Journal of Veterinary Sciences, 17(4), 1-7. https://doi.org/10.54058/saheljvs.v17i4.149

How to Cite

Haematologic and Biochemical Parameters of Haemogregarine-infected ‎and Non-infected African Hinge-Back Tortoises in Ibadan, Nigeria. (2020). Sahel Journal of Veterinary Sciences, 17(4), 1-7. https://doi.org/10.54058/saheljvs.v17i4.149

References

  1. Aikindi A.Y.A and Mahmoud I. Y. (2002): Hematological ‎survey in two species of sea turtles in the Arabian ‎sea during nesting season. Pak. J. Biol. Sci.5(3): ‎‎359-361.‎
  2. Andreani G., Carpene E., Cannavacciuolo A., Girolamo ‎N.D., Ferlizza E., Isani G. (2014): Reference values ‎for haematology and plasma biochemistry ‎variables, and protein electrophoresis of healthy ‎Hermann’s tortoises (Testudo hermannispecies) ‎Vet. Clin. Pathol. 573-583.‎
  3. Arikan H. and Cicek K. (2011) Arıkan, H. and Çiçek, K. ‎‎2011. Morphology of peripheral blood cells from ‎various ‎ species of Turkish Herpetofauna. Acta ‎Herpetologica 5(2): 179-198.‎
  4. Bomford R., Mason S. and Swash M (1974) Hutchison’s ‎Clinical methods. 16th edition, ELBS and Bailliere ‎Tindall, London.362p.‎
  5. Brown G.P., Shilton C.M. and Shine R., (2006): Do parasites ‎matter? Assessing the fitness consequences of ‎haemogregarine infection in snakes. Can. J. Zool. ‎‎84: 668-676.‎
  6. Christopher M.M., Berry K.H., Henen B.T. and Nagy K.A. ‎‎(2003): Clinical disease and laboratory ‎abnormalities in free-ranging desert tortoises in ‎California (1990-1995). J Wildl Dis.39: 35-56. ‎
  7. Cook A.C., Lawton P.S., Davies J.A. and Smit J.N. (2014): ‎Reassignment of the land tortoise haemogregarine ‎Haemogregarinafitzsimonsi Dias 1953 ‎‎(Adeleorina: Haemogregarinidae) to the genus ‎Hepatozoon Miller 1908 (Adeleorina: ‎Hepatozoidae) based on parasite morphology, life ‎cycle and phylogenetic analysis of 18S RNA ‎sequence fragments. Parasitol. 141: 1611-1620. ‎
  8. Cook C.A., Netherlands E.C. and Smit N.J. (2015): First ‎Hemolivia from southern Africa: reassigning ‎chelonian Haemogregarinaparvula Dias, 1953 ‎‎(Adeleorina: Haemogregarinidae) to Hemolivia (Adeleorina: Karyolysidae), Afr. Zool. 50 (2): ‎ ‎165-‎‎173.‎
  9. Diaz-Figueroa O. (2005): Characterizing the Health Status ‎of the Louisiana Gopher Tortoise ‎‎(Gopherus polyphemus). Thesis, Louisiana State ‎University, Baton Rouge, USA. 119 pp.‎
  10. Dickinson V.M., Jarchow J.L. and Trueblood M.H. (2002: ‎Hematology and plasma biochemistry reference ‎range values for free-ranging desert tortoises in ‎Arizona. J Wildl. Dis. 38(1): 143-153. ‎
  11. Dissanayake D.S.B., Thewarage L. D., Manel Rathnayake ‎R.M.P., Kularatne S.A.M., Shirani Ranasinghe J.G. ‎and Jayantha Rajapakse R.P.V. (2017): ‎Hematological and plasma biochemical ‎parameters in a wild population of Naja naja ‎‎(Linnaeus, 1758) in Sri Lanka. J. Venom. ‎Anim.Toxins Incl. Trop. Dis. 23:8.‎
  12. Geffre A., Friedrichs K., Harr K., Concordet D., Trumel C. ‎and Braun J.P. (2009): Reference values: A review. ‎Vet Clin Pathol. 38(3): 288-298.‎
  13. Hamooda E.A.F., El-Mansoury A.M., Mehdi A.R. (2014): ‎Some blood indexes of the tortoise Testudo graeca ‎‎(Linn., 1758, from Benghazi Province, Libya, ‎Scientific Vet. Res. J., 2(9): 36-44.‎
  14. Hart M.G., Samour H.J., Spratt M.J., Savage B., Hawkey ‎C.M. and Hart M.G. (1991): An analysis of ‎haematological findings on a feral population of ‎aldrabra giant tortoises (Geochelone gigantea). ‎Comparative Haematol. Int., 1(3): 145-149. ‎
  15. Hetenyi N., Satorhelyi T., Kovacs S. and Hullar I. (2016): ‎Variations in blood biochemical values in Male ‎Hermann’s tortoises (Testudo hermanni) ‎Veterinaria, 65:1.‎
  16. Houwen B. (2000): Blood film preparation and staining ‎procedures. Lab.Hematol. 6: 1-7.‎
  17. Javanbakht H., Somaye V. and Paria P. (2013): The ‎morphological characterization of the blood cells ‎in the three species of turtle and tortoise in Iran. ‎Res. Zool. 3(1): 38-44.‎
  18. Joyner P.H., Shreve A.A., Spahr J., Fountain A.L. and ‎Sleeman J.M. (2006): Phaeohyphomycosis in a ‎free living eastern box turtle (Terrapene ‎Carolina carolina). J. Wildl. Dis. 42: 883-888.‎
  19. Knotkova Z., Mazanek S., Hovorka M., Sloboda M. and ‎Knotek Z. (2005): Haematology and plasma ‎chemistry of Bornean river turtles suffering from ‎shell necrosis and haemogregarine parasites. Vet. ‎Med. (Praha) 50: 421-426.‎
  20. Lopez-Olvera J.R., Montane J., Ignasi M., Martınez-‎Silvestre A., Soler J. and ‎ Lavin S. (2003): ‎Effect of venipuncture site on hematologic and ‎serum biochemical parameters in marginated ‎tortoise (Testudo marginata). J. Wildl. Dis. 39: ‎‎830-836.‎
  21. Mader D. (1996): Reptile Medicine and Surgery 1st. ‎Philadelphia, W.B. Saunders Co., pp: 192-193, ‎‎380-381. ‎
  22. McArthur S. (2004): Problem solving approach to common ‎diseases of terrestrial and semi-aquatic chelonians. ‎In: McArthur S., Wilkinson R., Meyer J., Innis J.C., ‎Hernandez-Divers, S. (Eds.), Medicine and Surgery ‎of Tortoises and Turtles. Blackwell Publishing, ‎Oxford, UK, 309-377.‎
  23. Murphy J.B. (2016): Conservation Initiatives and Studies of ‎Tortoises, Turtles, and Terrapins Mostly in Zoos ‎and Aquariums. Part I. Tortoises Herpetol. Rev. ‎‎47(2): 335-349.‎
  24. Nardini G., Leopardi S. and Bielli M. (2013): Clinical ‎hematology in reptilian species. Vet. Clin. North ‎Am. Exot. Anim. Pract. 16 (1): 1-30.‎
  25. Omonona O.A., Olukole S.G. and Fushe F.A. (2011): ‎Haematology and serum biochemical parameters ‎in free ranging African side neck turtle ‎‎(Pelusius sinuatus) in Ibadan, Nigeria. Acta. ‎Herpetol. 6(2): 267-274.‎
  26. Roll U., Feldman A. and Novosolov M. (2017): The global ‎distribution of tetrapods reveals a need for targeted ‎reptile conservation. Nat. Ecol. Evol.1: 1677-1682.‎
  27. Social Science Statistics (2020): https://www.socscistatistics.‎com/tests/. Accessed date 29/09/2020.‎
  28. Stacy N.I., Alleman A.R. and Sayler K.A. (2011): Diagnostic ‎haematology of reptiles. Clin. Chem Lab Med. ‎‎31:87-108.‎
  29. Stuart S.N., Chanson J.S., Cox., N.A., Young B.E., Rodrigues ‎A.S., Fischman D.L. and Waller R.W. (2004): ‎Status and trends of amphibian declines and ‎extinctions worldwide. Sci.306:1783–1786.‎
  30. Thrall M.A., Dale C., Baker E. and Lassen E.D. (2004): ‎Hematology of reptiles. In: Veterinary hematology‎ and clinical chemistry. Pennsylvania, USA: ‎Lippincott Williams and Wilkins, 259-276.‎
  31. Tosunoglu C., Varol T.C. and Cigdem G. (2005): ‎Hematological values in hermann’s tortoise ‎‎(Testudo hermanni) and Spur-thighted tortoise ‎‎(Testudo greaca) from Thrace Region, Turkey Int. ‎J. Zoo Res., 1(1): 11-14.‎
  32. Walton S. (2002): Effects of season and cohort on the ‎haematology of the geometric tortoise Psammobatesgeometricus. J. Wildl. Dis. 38(1):143-153.‎
  33. Wilkinson R.J. (2004): Medicine and surgery of variations in ‎blood biochemical values in male Hermann’s ‎tortoises (Testudo hermanni) Clinical pathology. ‎In: Mc-Arthur S. et al. (Eds.), Tortoises and Turtles. ‎Blackwell Publishing, Oxford, UK, 141-186.‎
  34. Zaias J., Norton T., Fickel A., Spratt J., Altman N.H. and ‎Cray C. (2006): Biochemical and hematologic ‎values for 18 clinically healthy radiated tortoises ‎‎(Geochelone radiata) on St. Catherines Island, ‎Georgia. Vet. Clin. Pathol. 35(3): 321-325.‎