Main Article Content

Abstract

Unhygienic slaughtering practices are associated with meat contamination by pathogens including Listeria monocytogenes. This study investigated the occurrence, bacterial load, antimicrobial susceptibility and biofilm formation of L. monocytogenes in pork, slaughter facilities and water from Oko-Oba abattoir, Lagos State, Nigeria. A total of 216 samples; 146, 30, 20 and 20 from pork, water, table swabs and knife swabs respectively were collected for bacteriological analysis. Listeria selective media was used to isolate and characterise L. monocytogenes, antimicrobial susceptibility of the isolated bacteria was also determined. Biofilm production by the isolates for periods of 12, 24 and 36 hours were evaluated. Glucose, ethanol and crystal violet binding assay were used as nutrient, stressor and indicator respectively. The occurrence of L. monocytogenes in pork, water samples, table and knife swabs were 64.5%, 75%, 90% and 95% respectively, while overall prevalence was 73.3%. The mean load per gram were 3.78 ± 2.85, 4.27 ± 2.54, 5.60 ± 1.95 and 5.52 ± 1.41 (p ˂ 0.05) for pork, water table and knife swab samples, respectively. Fifty five percent of the isolates exhibited multidrug resistance (MDR) patterns to erythromycin (55%), tetracycline (55%), augmentin (85%), amoxicillin (90%), cotrimoxazole (95%), and cloxacillin (100%). The isolates produced biofilms at different concentrations of glucose and ethanol with the highest concentrations of biofilm produced at 36 hours. There were significant differences in mean biofilm values produced by the isolates. The occurrence of L. monocytogenes and the bacterial load in different samples are of economic and public health importance. Hygienic meat production from the abattoir could prevent contamination of pork by L. monocytogenes.

Keywords

Antimicrobial resistance; Biofilm; Listeria monocytogenes; Pork

Article Details

How to Cite
Aiyedun, J. O., Olatoye, O. I., Oludairo, O. O., Adesope, A. O., & Ogundijo, O. (2020). Occurrence, Antimicrobial Susceptibility and Biofilm Production in Listeria ‎monocytogenes Isolated from Pork and other Meat Processing Items at Oko-‎Oba Abattoir, Lagos State, Nigeria‎. Sahel Journal of Veterinary Sciences, 17(4), 24-30. Retrieved from http://saheljvs.org/index.php/saheljvs/article/view/111

References

  1. Adetunji V.O. and Adegoke G.O. (2008): Formation of ‎biofilm by strains of Listeria monocytogenes ‎isolated from soft cheese “wara” and its processing ‎environment. Afr. J. Biotechnol., 7 (16): 2893-2897.‎
  2. Adetunji V.O. and Odetokun I.A. (2012): Biofilm ‎Formation in Human and Tropical Food borne ‎isolates of Listeria Strains. Am. J. Food Technol., 7: ‎‎517-531.‎
  3. Adetunji, V.O. and Isola O. (2011): Antibiotic resistance of ‎Escherichia coli, Listeria and Salmonella isolates ‎from retail meat tables in Ibadan municipal ‎abattoir, Nigeria; Department of Veterinary Public ‎Health and Preventive Medicine, University of ‎Ibadan, Ibadan, Oyo State, Nigeria; Afr. J. ‎Biotechnol., 10(30):5795-5799‎
  4. Al-Mashhadany, D. A. (2019). Occurrence and antibiogram ‎of Listeria monocytogenes Isolates from Retail ‎Meat Shops at Erbil City, Kurdistan Region, Iraq. ‎Ital. J. ‎Food Saf., 8(4), 8451. https://doi.org/10.4081/ijfs.2‎‎019.8451.‎
  5. Anonymous (2000): Rapport de la commision d etude des ‎risques lies Listeria monocytogenes. Maison Alfort: ‎AFFSA. Available on https://www.anses.fr/en/system/files/MIC-Ra-Listeria2000.pdf. Accessed in the ‎‎13th of March 2020.‎
  6. Autio T., Hielm S., Miettinen M., Sjo¨berg A.M., Aarnisalo ‎K., Bjorkroth J., Mattila-Sandholm T. and Korkeala ‎H. (1999): Sources of Listeria monocytogenes ‎contamination in a cold-smoked rainbow trout ‎processing plant detected by pulsed-field gel ‎electrophoresis typing. Appl. Environ. Microbiol., ‎‎65, 150–155.‎
  7. Boes J, Nersting L, Nielsen E.M, Kranker S, Enoe C, ‎Wachmann H.C. and Baggesen D.L. (2005): ‎Prevalence and diversity of Campylobacter jejuni in ‎pig herds on farms with and without cattle or ‎poultry, J. Food Prot., 68(4): 722-727.‎
  8. Buncic S., Paunovic L. and Radisic D. (1991): The fate of ‎Listeria monocytogenes in fermented sausages and ‎in vacuum packaged frankfurtes. J. Food Prot., 54: ‎‎413–417.‎
  9. Charpentier E and Courvalin P. (1999): Antibiotic resistance ‎in Listeria spp. Antimicrob. Agents Chemother., 43 ‎‎(9):2103-8.‎
  10. Charpentier E, Gerbaud G, Jacquet C, Rocourt J. and ‎Courvalin P. (1995): Incidence of antibiotic ‎resistance in Listeria species. J. Infect. Dis., ‎‎172(1):277-81.‎
  11. Chen L. and Wen Y. (2011): The role of biofilm in persistent ‎infections and control strategies Int J. Oral Sci., ‎‎3(2): 66-73. doi: 10.4248/IJOS11022.‎
  12. Clinical and Laboratory Standard Institute M100-S26 ‎‎(CLSI) (2016). Performance Standards for ‎Antimicrobial Susceptibility Testing – 26th ‎International Supplement, M100S24E. Available at ‎www.amazon.com. Accessed 19th June, 2020.‎
  13. David, O.M. and Odeyemi, A.T. (2007): Antibiotic resistant ‎pattern of environmental isolates of Listeria ‎monocytogenes from Ado-Ekiti, Nigeria. Afr J. ‎Biotechnol, 6(18), 21352139.‎
  14. De Valk H., Vaillant V., Jacquet C., Rocourt J., Le Querrec ‎F., Stainer F., Quelquejeu N., Pierre O., Pierre V., ‎Desenclos J. C. and Goulet V. (2001): Two ‎consecutive nationwide outbreaks of listeriosis in ‎France, October 1999–February. Am. J. Epidemiol. ‎‎154: 944–950.‎
  15. Dieltjens L., Appermans K., Lissens M., Lories B., Kim W., ‎Van der Eycken E. V., Foster K. R. and Steenackers ‎H. P. (2020): Inhibiting bacterial cooperation is an ‎evolutionarily robust anti-biofilm strategy. Nat. ‎Commun. 11, 107. https://doi.org/10.1038/s41467-‎‎019-13660-x
  16. Donlan R.M. (2002): Biofilms: Microbial Life on Surfaces. ‎Emerg. Infect. Dis., 8 (9): 881 890. doi: 10.3201/eid‎‎0809.020063‎
  17. Evans K., Smith M., McDonough P. and Wiedmann M. ‎‎(2004): Eye infections due to Listeria ‎monocytogenes in three cows and one horse. J. Vet. ‎Diagn. Invest., 16: 464–469.‎
  18. Giovannacci I., Ermel G., Salvat G., Vendeuvre J.L. and ‎Bellon‐Fontaine M.N. (2000): Physicochemical ‎surface properties of five Listeria monocytogenes ‎strains from a pork‐processing environment in ‎relation to serotypes, genotypes and growth ‎temperature. J. Appl. Microbiol., 88 (6): 992-1000.‎
  19. Hao, H., Cheng, G., Iqbal, Z., Ai, X., Hussain, H. I., Huang, ‎L., Dai, M., Wang, Y., Liu, Z., and Yuan, Z. (2014). ‎Benefits and risks of antimicrobial use in food-‎producing animals. Front. Microbial., 5, 288. ‎https://doi.org/10.3389/fmicb.2014.00288. ‎Available at:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054498/. Accessed 20th June, 2020.‎
  20. Hellstrom, S., Laukkanen. R., Siekkinen, K. M., Ranta, J., ‎Maijala, R. and Korkeala, H. (2010). Listeria ‎monocytogenes contamination in pork can originate ‎from farms. J. Food Prot. 73 641–648.‎
  21. Iwu C.D. and Okoh A.I. (2020): Characterization of ‎antibiogram fingerprints in Listeria monocytogenes ‎recovered from irrigation water and agricultural soil ‎samples. PLOS One. https://doi.org/10.1371/journal‎‎.pone.0228956‎
  22. Jeffers G.T., Bruce, J.L., McDonough, P.L., Scarlett, J., Boor, ‎K.J. and Weildmann, M. (2001): Comparative ‎genetic characterization of Listeria monocytogenes ‎isolates from human and animal listeriosis cases. ‎Microbiol., 147 (5): 1095 1104. doi: 10.1099/0022‎‎1287-147-5-1095.‎
  23. Jones, G. S. and D'Orazio, S. E. (2013). Listeria ‎monocytogenes: cultivation and laboratory maintenance. Current Protocols in Microbiology, 31, 9B.2.‎‎1–9B.2.7. ‎
  24. Kalmokoff M.L., Austin J.W.X., Wan D., Sanders G., ‎Banerjee S. and Farber J.M. (2001): Adsorption, ‎attachment and biofilm formation among isolates ‎of Listeria monocytogenes using model conditions. ‎J. Appl. Microbiol., 91: 725–734.‎
  25. Kassinger S.J. and van Hoek M.L. (2020): Biofilm ‎architecture: An emerging synthetic biology target. ‎Synth Syst Biotechnol., 5 (1): 1-10. ‎https://doi.org/10.1016/j.synbio.2020.01.001‎
  26. Kayode A.J., Igbinosa E.O. and Okoh A.I. (2020): Overview ‎of listeriosis in the Southern African Hemisphere—‎Review. J. Food Saf., 40: e12732. ‎https://doi.org/10.1111/jfs.12732‎
  27. Kemnic T.R. and Coleman M (2019): Trimethoprim ‎Sulfamethoxazole. In: StatPearls [Internet]. ‎Treasure Island (FL): StatPearls Publishing; 2020 ‎Jan-. ‎Available from: https://www.ncbi.nlm.nih.gov/books/NBK513232/‎
  28. Lappi, V.R., Thimothe, J., Nightingale, K.K., Gail, K., Scott, ‎V.N. and Wiedmann, M. (2004): Longitudinal ‎studies on Listeria in smoked fish plants: impacts of ‎intervention strategies on contamination patterns. J. ‎Food Prot. 67: 2500-2514‎
  29. Lee, H, Y., Chai, L.C., Pui, C.F., Mustafa, 1 S., Cheah, Y.K., ‎Nishibuchi, M., and Radu, S. (2013). Formation of ‎biofilm by Listeria monocytogenes ATCC 19112 at ‎different incubation temperatures and ‎concentrations of sodium chloride. Braz. J. ‎Microbiol., 44(1): 51–55. doi: 10.1590/S1517-‎‎83822013005000004‎
  30. Lida T., Kanzaki M., Nakama A., Kokubo Y., Mayuyama ‎T. and Kaneuchi C. (1998): Detection of Listeria ‎monocytogenes in humans, animals and Foods. J. ‎Vet. Med. Sci., 60: 1341-1343.‎
  31. Liu D. (2006): Identification, subtyping and virulence ‎determination of Listeria monocytogenes, an ‎important foodborne pathogen. J. Med. Microbiol., ‎‎55: 645-659.‎
  32. Lundén J. R. T. and Korkeala H. (2004): Human listeriosis ‎outbreaks linked to dairy products in Europe. J. ‎Dairy Sci. 87: E6-E11.‎
  33. Mead, P.S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J.S., ‎and Shapiro, C. (1999): Food-related illness and ‎death in the United States. Emerg. Infect. Dis., 5(5): ‎‎607-625.‎
  34. Ouyang Y., Li J., Dong Y., Blakely L.V. and Cao M. (2012): ‎Genome-widescreening of genes required for ‎Listeria monocytogenes biofilm formation. J. ‎Biotechnol. Res., 4: 13-25.‎
  35. Poros-Gluchowska J. and Markiewicz Z. (2003): ‎Antimicrobial resistance of Listeria ‎monocytogenes. Acta Microbiol. Pol.., 2(2): 113-29.‎
  36. Poulsen, V.L. (1999): Microbial biofilm in food processing. ‎Lebensmittel-Wissenschaft und -Technologie, 32: ‎‎321–326.‎
  37. Poyart-Salmeron, C., Carber, C., Trieu-Cuot, P., Courtieu, ‎A.L. and Courvalin, P. (1990): Transferable ‎plasmid-mediated antibiotic resistance in Listeria ‎monocytogenes. Lancet, 335 (8703): 1422-1426.‎
  38. Prieto M., Martínez C., Aguerre L., Rocca M.F., Cipolla L. ‎and Callejo R. (2016): Antibiotic susceptibility of ‎Listeria monocytogenes in Argentina. Enfermedades ‎Infecciosas Microbiología Clínica, 34 (2): 91-95. ‎DOI: 10.1016/j.eimc.2015.03.007‎
  39. Rothrock M.J. Jr, Micciche A.C., Bodie A.R. and Ricke S.C. ‎‎(2019): Listeria Occurrence and Potential Control ‎Strategies in Alternative and Conventional Poultry ‎Processing and Retail. Front. Sustain. Food Syst. ‎‎3:33. doi: 10.3389/fsufs.2019.00033‎
  40. Shahbandeh, M. (2019). Global Meat Industry - Statistics ‎and Facts. Available at: https://www.statista.com/topics/4880/global-meat-industry/. Accessed 19th ‎June, 2020.‎
  41. Sharma D., Misba L. and Khan A.U. (2019): Antibiotics ‎versus biofilm: an emerging battleground in ‎microbial communities. Antimicrob Resist. Infect. ‎Control, 8: 76. https://doi.org/10.1186/s13756-019-‎‎0533-3‎
  42. Stein, H., Stessl, B., Brunthaler, R., Loncaric I., Weissenböck ‎H., Ruczizka U., Ladinig A. and Schwarz L. (2018): ‎Listeriosis in fattening pigs caused by poor quality ‎silage - a case report. BMC Vet Res 14, 362. ‎https://doi.org/10.1186/s12917-018-1687-6‎
  43. Swaminathan, B. and Gerner-Smidt, P. (2007): The ‎epidemiology of human listeriosis. Microbes Infect. ‎‎9, 1236-1243.‎
  44. Tan, S.L., Lee, H.Y., Abu Baker, F., Abdul Kareem, M.S ‎Rukayadi, Y. and Mahyudin, N.A., (2013): ‎Microbiological quality on food handlers’ hands at ‎primary schools in Hulu Langat District, Malaysia. ‎Intl. Food Res. J., 20 (5): 2973-2977.‎
  45. Tchatchouang C.K., Fri J., Santi M.D., Brandi G., Schiavano ‎G.F., Amagliani G. and Ateba G.N. (2019): ‎Listeriosis Outbreak in South Africa: A ‎Comparative Analysis with Previously Reported ‎Cases Worldwide. Front. Sustain. Food Syst., ‎https://doi.org/10.3389/fsufs.2019.00033‎
  46. Usman, U. B., Kwaga, 1 J. K. P., Kabir, J., Olonitola, O. S., ‎Radu, S. and Bande F. (2016). Molecular ‎Characterization and Phylogenetic Analysis of ‎Listeria monocytogenes Isolated from Milk and ‎Milk Products in Kaduna, Nigeria. Can. J. Infect. ‎Dis. Med., doi.org/10.1155/2016/4313827. Available at https://www.hindawi.com/journals/cjidmm/201‎‎6/4313827/. Accessed May 20th, 2019.‎
  47. Vázquez-Boland J.A., Kuhn M, Berche P., Chakraborty T., ‎Domínguez-Bernal G., Goebel W., González-Zorn ‎B., Wehland J. and Kreft J. (2001b): Listeria ‎pathogenesis and molecular virulence determinants ‎Clin. Microbiol. Rev., 14(3): 584-640.‎
  48. Vestby L.K., Grønseth T., Simm R. and Nesse L.L. (2020): ‎Bacterial Biofilm and its Role in the Pathogenesis of ‎Disease. Antibiotics, 9(2): 59. ‎https://doi.org/10.3390/antibiotics9020059‎
  49. Walsh R., Duffy G., Sheridan J.J., Blair L.S. and McDowell ‎D.A. (2001): Antibiotic resistance among Listeria, ‎including Listeria monocytogenes, in retail foods. J. ‎Appl. Microbiol., 90 (4): 517-522.‎
  50. Walter F.S. III (2000): Foodborne Listeriosis. Clin. Infect. ‎Dis., 31: 770–775.‎
  51. Williams A.J. and Nadel S. (2001): Bacterial meningitis: ‎current controversies in approaches to treatment. ‎CNS Drugs, 15 (12): 909-919. Available at ‎https://www.ncbi.nlm.nih.gov/pubmed/11735611. ‎Accessed 13th March, 2020. ‎
  52. Williams S.K., Roof S., Boyle E.A., Burson D., Thippareddi ‎H., Geornaras I., Sofos J.N., Wiedmann M. and ‎Nightingale K.J. (2011): Molecular ecology of ‎Listeria monocytogenes and other Listeria species ‎in small and very small ready-to-eat meat ‎processing plants; Food Prot. 74 (1): 63-77.‎
  53. World Health Organization (WHO) (2004): Risk assessment ‎of Listeria monocytogenes in ready-to-eat foods. ‎World Health Organization and Food and ‎Agriculture Organization of the United Nations, ‎Geneva. Available at: https://www.who.int/foodsafety/publications/mra4-risk-listeria/en/. Accessed ‎‎12th March, 2020.‎
  54. World Health Organization (WHO) (2018): Listeriosis. ‎Available at: https://www.who.int/news-room/fact-‎sheets/detail/listeriosis. Accessed on 13th March, ‎‎2020. ‎